TemplateSpatialModel

class gammapy.modeling.models.TemplateSpatialModel(map, norm=1, meta=None, normalize=True, interp_kwargs=None, filename=None)[source]

Bases: gammapy.modeling.models.SpatialModel

Spatial sky map template model (2D).

This is for a 2D image. Use SkyDiffuseCube for 3D cubes with an energy axis.

Parameters:
map : Map

Map template

norm : float

Norm parameter (multiplied with map values)

meta : dict, optional

Meta information, meta[‘filename’] will be used for serialization

normalize : bool

Normalize the input map so that it integrates to unity.

interp_kwargs : dict

Interpolation keyword arguments passed to gammapy.maps.Map.interp_by_coord. Default arguments are {‘interp’: ‘linear’, ‘fill_value’: 0}.

Attributes Summary

evaluation_radius Evaluation radius (Angle).
filename
frame
map
meta
norm
normalize
parameters Parameters (Parameters)
position SkyCoord
tag

Methods Summary

__call__(self, lon, lat) Call evaluate method
copy(self) A deep copy.
create(tag, \*args, \*\*kwargs) Create a model instance.
evaluate(self, lon, lat, norm) Evaluate model.
evaluate_geom(self, geom) Evaluate model on Geom.
from_dict(data)
read(filename[, normalize]) Read spatial template model from FITS image.
to_dict(self)

Attributes Documentation

evaluation_radius

Evaluation radius (Angle).

Set to half of the maximal dimension of the map.

filename
frame
map
meta
norm
normalize
parameters

Parameters (Parameters)

position

SkyCoord

tag = 'TemplateSpatialModel'

Methods Documentation

__call__(self, lon, lat)

Call evaluate method

copy(self)

A deep copy.

static create(tag, *args, **kwargs)

Create a model instance.

Examples

>>> from gammapy.modeling import Model
>>> spectral_model = Model.create("PowerLaw2SpectralModel", amplitude="1e-10 cm-2 s-1", index=3)
>>> type(spectral_model)
gammapy.modeling.models.spectral.PowerLaw2SpectralModel
evaluate(self, lon, lat, norm)[source]

Evaluate model.

evaluate_geom(self, geom)

Evaluate model on Geom.

classmethod from_dict(data)[source]
classmethod read(filename, normalize=True, **kwargs)[source]

Read spatial template model from FITS image.

The default unit used if none is found in the file is sr-1.

Parameters:
filename : str

FITS image filename.

normalize : bool

Normalize the input map so that it integrates to unity.

kwargs : dict

Keyword arguments passed to Map.read().

to_dict(self)[source]