TemplateSpatialModel¶
-
class
gammapy.modeling.models.TemplateSpatialModel(map, norm=1, meta=None, normalize=True, interp_kwargs=None, filename=None)[source]¶ Bases:
gammapy.modeling.models.SpatialModelSpatial sky map template model (2D).
This is for a 2D image. Use
SkyDiffuseCubefor 3D cubes with an energy axis.Parameters: - map :
Map Map template
- norm : float
Norm parameter (multiplied with map values)
- meta : dict, optional
Meta information, meta[‘filename’] will be used for serialization
- normalize : bool
Normalize the input map so that it integrates to unity.
- interp_kwargs : dict
Interpolation keyword arguments passed to
gammapy.maps.Map.interp_by_coord. Default arguments are {‘interp’: ‘linear’, ‘fill_value’: 0}.
Attributes Summary
evaluation_radiusEvaluation radius ( Angle).filenameframemapmetanormnormalizeparametersParameters ( Parameters)positionSkyCoordtagMethods Summary
__call__(self, lon, lat)Call evaluate method copy(self)A deep copy. create(tag, \*args, \*\*kwargs)Create a model instance. evaluate(self, lon, lat, norm)Evaluate model. evaluate_geom(self, geom)Evaluate model on Geom.from_dict(data)read(filename[, normalize])Read spatial template model from FITS image. to_dict(self)Attributes Documentation
-
filename¶
-
frame¶
-
map¶
-
meta¶
-
norm¶
-
normalize¶
-
parameters¶ Parameters (
Parameters)
-
tag= 'TemplateSpatialModel'¶
Methods Documentation
-
__call__(self, lon, lat)¶ Call evaluate method
-
copy(self)¶ A deep copy.
-
static
create(tag, *args, **kwargs)¶ Create a model instance.
Examples
>>> from gammapy.modeling import Model >>> spectral_model = Model.create("PowerLaw2SpectralModel", amplitude="1e-10 cm-2 s-1", index=3) >>> type(spectral_model) gammapy.modeling.models.spectral.PowerLaw2SpectralModel
-
classmethod
read(filename, normalize=True, **kwargs)[source]¶ Read spatial template model from FITS image.
The default unit used if none is found in the file is
sr-1.Parameters: - filename : str
FITS image filename.
- normalize : bool
Normalize the input map so that it integrates to unity.
- kwargs : dict
Keyword arguments passed to
Map.read().
- map :