SpectrumDataset¶
-
class
gammapy.spectrum.SpectrumDataset(model=None, counts=None, livetime=None, aeff=None, edisp=None, background=None, mask_safe=None, mask_fit=None, name='', gti=None)[source]¶ Bases:
gammapy.modeling.DatasetSpectrum dataset for likelihood fitting.
The spectrum dataset bundles reduced counts data, with a spectral model, background model and instrument response function to compute the fit-statistic given the current model and data.
Parameters: - model :
SpectralModel Fit model
- counts :
CountsSpectrum Counts spectrum
- livetime :
Quantity Livetime
- aeff :
EffectiveAreaTable Effective area
- edisp :
EnergyDispersion Energy dispersion
- background :
CountsSpectrum Background to use for the fit.
- mask_safe :
ndarray Mask defining the safe data range.
- mask_fit :
ndarray Mask to apply to the likelihood for fitting.
- name : str
Dataset name.
- gti :
GTI GTI of the observation or union of GTI if it is a stacked observation
Attributes Summary
data_shapeShape of the counts data energy_rangeEnergy range defined by the safe mask excessExcess (counts - alpha * counts_off) likelihood_typemaskCombined fit and safe mask mask_safemodelparametersMethods Summary
copy(self)A deep copy. create(e_reco[, e_true, reference_time])Creates empty SpectrumDataset fake(self[, random_state])Simulate fake counts for the current model and reduced irfs. likelihood(self)Total likelihood given the current model parameters. likelihood_per_bin(self)Likelihood per bin given the current model parameters npred(self)Return npred map (model + background) plot_counts(self[, ax])Plot predicted and detected counts. plot_fit(self)Plot counts and residuals in two panels. plot_residuals(self[, method, ax])Plot residuals. residuals(self[, method])Compute the spectral residuals. stack(self, other)Stack this dataset with another one. Attributes Documentation
-
data_shape¶ Shape of the counts data
-
energy_range¶ Energy range defined by the safe mask
-
excess¶ Excess (counts - alpha * counts_off)
-
likelihood_type= 'cash'¶
-
mask¶ Combined fit and safe mask
-
mask_safe¶
-
model¶
-
parameters¶
Methods Documentation
-
copy(self)¶ A deep copy.
-
classmethod
create(e_reco, e_true=None, reference_time='2000-01-01')[source]¶ Creates empty SpectrumDataset
Empty containers are created with the correct geometry. counts, background and aeff are zero and edisp is diagonal.
The safe_mask is set to False in every bin.
Parameters:
-
fake(self, random_state='random-seed')[source]¶ Simulate fake counts for the current model and reduced irfs.
This method overwrites the counts defined on the dataset object.
Parameters: - random_state : {int, ‘random-seed’, ‘global-rng’,
RandomState} Defines random number generator initialisation. Passed to
get_random_state.
- random_state : {int, ‘random-seed’, ‘global-rng’,
-
likelihood(self)¶ Total likelihood given the current model parameters.
-
plot_counts(self, ax=None)[source]¶ Plot predicted and detected counts.
Parameters: - ax :
Axes Axes object.
Returns: - ax :
Axes Axes object.
- ax :
-
plot_fit(self)[source]¶ Plot counts and residuals in two panels.
Calls
plot_countsandplot_residuals.
-
plot_residuals(self, method='diff', ax=None, **kwargs)[source]¶ Plot residuals.
Parameters: - ax :
Axes Axes object.
- method : {“diff”, “diff/model”, “diff/sqrt(model)”}
Normalization used to compute the residuals, see
SpectrumDataset.residuals()- **kwargs : dict
Keywords passed to
CountsSpectrum.plot()
Returns: - ax :
Axes Axes object.
- ax :
-
residuals(self, method='diff')[source]¶ Compute the spectral residuals.
Parameters: - method : {“diff”, “diff/model”, “diff/sqrt(model)”}
- Method used to compute the residuals. Available options are:
diff(default): data - modeldiff/model: (data - model) / modeldiff/sqrt(model): (data - model) / sqrt(model)
Returns: - residuals :
CountsSpectrum Residual spectrum
-
stack(self, other)[source]¶ Stack this dataset with another one.
Safe mask is applied to compute the stacked counts vector. Counts outside each dataset safe mask are lost.
Stacking is performed in-place.
The stacking of 2 datasets is implemented as follows. Here, \(k\) denotes a bin in reconstructed energy and \(j = {1,2}\) is the dataset number
The
mask_safeof each dataset is defined as:\[\begin{split}\epsilon_{jk} =\left\{\begin{array}{cl} 1, & \mbox{if bin k is inside the energy thresholds}\\ 0, & \mbox{otherwise} \end{array}\right.\end{split}\]Then the total
countsand model backgroundbkgare computed according to:\[ \begin{align}\begin{aligned}\overline{\mathrm{n_{on}}}_k = \mathrm{n_{on}}_{1k} \cdot \epsilon_{1k} + \mathrm{n_{on}}_{2k} \cdot \epsilon_{2k}\\\overline{bkg}_k = bkg_{1k} \cdot \epsilon_{1k} + bkg_{2k} \cdot \epsilon_{2k}\end{aligned}\end{align} \]The stacked
safe_maskis then:\[\overline{\epsilon_k} = \epsilon_{1k} OR \epsilon_{2k}\]Please refer to the
IRFStackerfor the description of how the IRFs are stacked.Parameters: - other :
SpectrumDataset the dataset to stack to the current one
- other :
- model :