MapDataset¶
-
class
gammapy.cube.
MapDataset
(model=None, counts=None, exposure=None, mask_fit=None, psf=None, edisp=None, background_model=None, name='', likelihood='cash', evaluation_mode='local', mask_safe=None, gti=None)[source]¶ Bases:
gammapy.modeling.Dataset
Perform sky model likelihood fit on maps.
Parameters: - model :
SkyModel
orSkyModels
Source sky models.
- counts :
WcsNDMap
Counts cube
- exposure :
WcsNDMap
Exposure cube
- mask_fit :
ndarray
Mask to apply to the likelihood for fitting.
- psf :
PSFKernel
PSF kernel
- edisp :
EnergyDispersion
Energy dispersion
- background_model :
BackgroundModel
Background model to use for the fit.
- likelihood : {“cash”, “cstat”}
Likelihood function to use for the fit.
- evaluation_mode : {“local”, “global”}
Model evaluation mode.
The “local” mode evaluates the model components on smaller grids to save computation time. This mode is recommended for local optimization algorithms. The “global” evaluation mode evaluates the model components on the full map. This mode is recommended for global optimization algorithms.
- mask_safe :
ndarray
Mask defining the safe data range.
- gti : ‘~gammapy.data.GTI’
GTI of the observation or union of GTI if it is a stacked observation
Attributes Summary
data_shape
Shape of the counts data (tuple) mask
Combined fit and safe mask model
Sky model to fit ( SkyModel
orSkyModels
)parameters
List of parameters ( Parameters
)Methods Summary
copy
(self)A deep copy. create
(geom[, geom_irf, migra_axis, …])Creates a MapDataset object with zero filled maps fake
(self[, random_state])Simulate fake counts for the current model and reduced IRFs. from_hdulist
(hdulist[, name])Create map dataset from list of HDUs. likelihood
(self)Total likelihood given the current model parameters. likelihood_per_bin
(self)Likelihood per bin given the current model parameters npred
(self)Predicted source and background counts ( Map
).plot_residuals
(self[, method, …])Plot spatial and spectral residuals. read
(filename[, name])Read map dataset from file. residuals
(self[, method])Compute residuals map. stack
(self, other)Stack another dataset in place. to_dict
(self[, filename])Convert to dict for YAML serialization. to_hdulist
(self)Convert map dataset to list of HDUs. to_spectrum_dataset
(self, on_region[, …])Return a ~gammapy.spectrum.SpectrumDataset from on_region. write
(self, filename[, overwrite])Write map dataset to file. Attributes Documentation
-
data_shape
¶ Shape of the counts data (tuple)
-
mask
¶ Combined fit and safe mask
-
model
¶ Sky model to fit (
SkyModel
orSkyModels
)
-
parameters
¶ List of parameters (
Parameters
)
Methods Documentation
-
copy
(self)¶ A deep copy.
-
classmethod
create
(geom, geom_irf=None, migra_axis=None, rad_axis=None, reference_time='2000-01-01', name='')[source]¶ Creates a MapDataset object with zero filled maps
Parameters: - geom: `~gammapy.maps.WcsGeom`
Reference target geometry in reco energy, used for counts and background maps
- geom_irf: `~gammapy.maps.WcsGeom`
Reference image geometry in true energy, used for IRF maps.
- migra_axis: `~gammapy.maps.MapAxis`
Migration axis for the energy dispersion map
- rad_axis: `~gammapy.maps.MapAxis`
Rad axis for the psf map
- name : str
Name of the dataset.
-
fake
(self, random_state='random-seed')[source]¶ Simulate fake counts for the current model and reduced IRFs.
This method overwrites the counts defined on the dataset object.
Parameters: - random_state : {int, ‘random-seed’, ‘global-rng’,
RandomState
} Defines random number generator initialisation. Passed to
get_random_state
.
- random_state : {int, ‘random-seed’, ‘global-rng’,
-
classmethod
from_hdulist
(hdulist, name='')[source]¶ Create map dataset from list of HDUs.
Parameters: - hdulist :
HDUList
List of HDUs.
Returns: - dataset :
MapDataset
Map dataset.
- hdulist :
-
plot_residuals
(self, method='diff', smooth_kernel='gauss', smooth_radius='0.1 deg', region=None, figsize=(12, 4), **kwargs)[source]¶ Plot spatial and spectral residuals.
The spectral residuals are extracted from the provided
region
, and the normalization used for the residuals computation can be controlled using thenorm
parameter. If noregion
is passed, only the spatial residuals are shown.Parameters: - method : {“diff”, “diff/model”, “diff/sqrt(model)”}
Method used to compute the residuals, see
MapDataset.residuals()
- smooth_kernel : {‘gauss’, ‘box’}
Kernel shape.
- smooth_radius: `~astropy.units.Quantity`, str or float
Smoothing width given as quantity or float. If a float is given it is interpreted as smoothing width in pixels.
- region: `~regions.Region`
Region (pixel or sky regions accepted)
- figsize : tuple
Figure size used for the plotting.
- **kwargs : dict
Keyword arguments passed to
imshow
.
Returns: - ax_image, ax_spec :
Axes
, Image and spectrum axes.
-
classmethod
read
(filename, name='')[source]¶ Read map dataset from file.
Parameters: - filename : str
Filename to read from.
Returns: - dataset :
MapDataset
Map dataset.
-
residuals
(self, method='diff')[source]¶ Compute residuals map.
Parameters: - method: {“diff”, “diff/model”, “diff/sqrt(model)”}
- Method used to compute the residuals. Available options are:
diff
(default): data - modeldiff/model
: (data - model) / modeldiff/sqrt(model)
: (data - model) / sqrt(model)
Returns: - residuals :
gammapy.maps.WcsNDMap
Residual map.
-
stack
(self, other)[source]¶ Stack another dataset in place.
Parameters: - other: `~gammapy.cube.MapDataset`
Map dataset to be stacked with this one.
-
to_hdulist
(self)[source]¶ Convert map dataset to list of HDUs.
Returns: - hdulist :
HDUList
Map dataset list of HDUs.
- hdulist :
-
to_spectrum_dataset
(self, on_region, containment_correction=False)[source]¶ Return a ~gammapy.spectrum.SpectrumDataset from on_region.
Counts and background are summed in the on_region.
Effective area is taken from the average exposure divided by the livetime. Here we assume it is the sum of the GTIs.
EnergyDispersion is obtained at the on_region center. Only regions with centers are supported.
Parameters: - on_region :
SkyRegion
the input ON region on which to extract the spectrum
- containment_correction : bool
Apply containment correction for point sources and circular on regions
Returns: - dataset :
SpectrumDataset
the resulting reduced dataset
- on_region :
- model :