LightCurveEstimator¶
-
class
gammapy.time.
LightCurveEstimator
(datasets, source='', norm_min=0.2, norm_max=5, norm_n_values=11, norm_values=None, sigma=1, sigma_ul=2, reoptimize=False)[source]¶ Bases:
object
Estimate flux points for a given list of datasets, each per time bin.
Parameters: - datasets : list of
SpectrumDataset
orMapDataset
Spectrum or Map datasets.
- source : str
For which source in the model to compute the flux points. Default is ‘’
- norm_min : float
Minimum value for the norm used for the likelihood profile evaluation.
- norm_max : float
Maximum value for the norm used for the likelihood profile evaluation.
- norm_n_values : int
Number of norm values used for the likelihood profile.
- norm_values :
numpy.ndarray
Array of norm values to be used for the likelihood profile.
- sigma : int
Sigma to use for asymmetric error computation.
- sigma_ul : int
Sigma to use for upper limit computation.
- reoptimize : bool
reoptimize other parameters during likelihod scan
Attributes Summary
ref_model
Methods Summary
estimate_counts
(self, dataset)Estimate counts for the flux point. estimate_norm
(self)Fit norm of the flux point. estimate_norm_err
(self)Estimate covariance errors for a flux point. estimate_norm_errn_errp
(self)Estimate asymmetric errors for a flux point. estimate_norm_scan
(self)Estimate likelihood profile for the norm parameter. estimate_norm_ts
(self)Estimate ts and sqrt(ts) for the flux point. estimate_norm_ul
(self, dataset)Estimate upper limit for a flux point. estimate_time_bin_flux
(self, dataset[, steps])Estimate flux point for a single energy group. run
(self, e_ref, e_min, e_max[, steps])Run light curve extraction. Attributes Documentation
-
ref_model
¶
Methods Documentation
-
estimate_counts
(self, dataset)[source]¶ Estimate counts for the flux point.
Parameters: - dataset :
Dataset
the dataset object
Returns: - result : dict
Dict with an array with one entry per dataset with counts for the flux point.
- dataset :
-
estimate_norm
(self)[source]¶ Fit norm of the flux point.
Returns: - result : dict
Dict with “norm” and “loglike” for the flux point.
-
estimate_norm_err
(self)[source]¶ Estimate covariance errors for a flux point.
Returns: - result : dict
Dict with symmetric error for the flux point norm.
-
estimate_norm_errn_errp
(self)[source]¶ Estimate asymmetric errors for a flux point.
Returns: - result : dict
Dict with asymmetric errors for the flux point norm.
-
estimate_norm_scan
(self)[source]¶ Estimate likelihood profile for the norm parameter.
Returns: - result : dict
Dict with norm_scan and dloglike_scan for the flux point.
-
estimate_norm_ts
(self)[source]¶ Estimate ts and sqrt(ts) for the flux point.
Returns: - result : dict
Dict with ts and sqrt(ts) for the flux point.
-
estimate_norm_ul
(self, dataset)[source]¶ Estimate upper limit for a flux point.
Returns: - result : dict
Dict with upper limit for the flux point norm.
-
estimate_time_bin_flux
(self, dataset, steps='all')[source]¶ Estimate flux point for a single energy group.
Parameters: - steps : list of str
Which steps to execute. Available options are:
- “err”: estimate symmetric error.
- “errn-errp”: estimate asymmetric errors.
- “ul”: estimate upper limits.
- “ts”: estimate ts and sqrt(ts) values.
- “norm-scan”: estimate likelihood profiles.
By default all steps are executed.
Returns: - result : dict
Dict with results for the flux point.
-
run
(self, e_ref, e_min, e_max, steps='all')[source]¶ Run light curve extraction.
Normalize integral and energy flux between emin and emax.
Parameters: - e_ref :
Quantity
reference energy of dnde flux normalization
- e_min :
Quantity
minimum energy of integral and energy flux normalization interval
- e_max :
Quantity
minimum energy of integral and energy flux normalization interval
- steps : list of str
Which steps to execute. Available options are:
- “err”: estimate symmetric error.
- “errn-errp”: estimate asymmetric errors.
- “ul”: estimate upper limits.
- “ts”: estimate ts and sqrt(ts) values.
- “norm-scan”: estimate likelihood profiles.
By default all steps are executed.
Returns: - lightcurve :
LightCurve
the Light Curve object
- e_ref :
- datasets : list of