MapEvaluator¶
-
class
gammapy.cube.
MapEvaluator
(model=None, exposure=None, psf=None, edisp=None, evaluation_mode='local')[source]¶ Bases:
object
Sky model evaluation on maps.
This evaluates a sky model on a 3D map and convolves with the IRFs, and returns a map of the predicted counts. Note that background counts are not added.
For now, we only make it work for 3D WCS maps with an energy axis. No HPX, no other axes, those can be added later here or via new separate model evaluator classes.
Parameters: - model :
SkyModel
Sky model
- exposure :
Map
Exposure map
- psf :
PSFKernel
PSF kernel
- edisp :
EnergyDispersion
Energy dispersion
- evaluation_mode : {“local”, “global”}
Model evaluation mode.
Attributes Summary
geom
True energy map geometry ( Geom
)needs_update
Check whether the model component has drifted away from its support. Methods Summary
apply_edisp
(self, npred)Convolve map data with energy dispersion. apply_exposure
(self, flux)Compute npred cube apply_psf
(self, npred)Convolve npred cube with PSF compute_dnde
(self)Compute model differential flux at map pixel centers. compute_flux
(self)Compute model integral flux over map pixel volumes. compute_npred
(self)Evaluate model predicted counts. update
(self, exposure, psf, edisp, geom)Update MapEvaluator, based on the current position of the model component. Attributes Documentation
-
needs_update
¶ Check whether the model component has drifted away from its support.
Methods Documentation
-
apply_edisp
(self, npred)[source]¶ Convolve map data with energy dispersion.
Parameters: - npred :
Map
Predicted counts in true energy bins
Returns: - npred_reco :
Map
Predicted counts in reco energy bins
- npred :
-
compute_dnde
(self)[source]¶ Compute model differential flux at map pixel centers.
Returns: - model_map :
Map
Sky cube with data filled with evaluated model values. Units:
cm-2 s-1 TeV-1 deg-2
- model_map :
-
compute_flux
(self)[source]¶ Compute model integral flux over map pixel volumes.
For now, we simply multiply dnde with bin volume.
-
compute_npred
(self)[source]¶ Evaluate model predicted counts.
Returns: - npred :
Map
Predicted counts on the map (in reco energy bins)
- npred :
-
update
(self, exposure, psf, edisp, geom)[source]¶ Update MapEvaluator, based on the current position of the model component.
Parameters: - exposure :
Map
Exposure map.
- psf :
gammapy.cube.PSFMap
PSF map.
- edisp :
gammapy.cube.EDispMap
Edisp map.
- geom :
gammapy.maps.Geom
Reference geometry of the data.
- exposure :
- model :