FluxMetaData#

class gammapy.estimators.FluxMetaData(*, sed_type: typing.Optional[gammapy.estimators.metadata.SEDTYPEEnum] = None, sed_type_init: typing.Optional[gammapy.estimators.metadata.SEDTYPEEnum] = None, n_sigma: typing.Optional[float] = None, n_sigma_ul: typing.Optional[float] = None, sqrt_ts_threshold_ul: typing.Optional[float] = None, n_sigma_sensitivity: typing.Optional[float] = None, target: typing.Optional[gammapy.utils.metadata.TargetMetaData] = None, creation: typing.Optional[gammapy.utils.metadata.CreatorMetaData] = CreatorMetaData(creator='Gammapy 1.2', date=<Time object: scale='utc' format='datetime' value=2024-02-29 10:21:41.167622>, origin=None), optional: typing.Optional[dict] = None)[source]#

Bases: gammapy.utils.metadata.MetaData

Metadata containing information about the FluxPoints and FluxMaps.

Attributes
sed_type{“dnde”, “flux”, “eflux”, “e2dnde”, “likelihood”}, optional

SED type.

sed_type_init{“dnde”, “flux”, “eflux”, “e2dnde”, “likelihood”}, optional

SED type of the initial data.

n_sigmafloat, optional

Significance threshold above which upper limits should be used.

n_sigma_ulfloat, optional

Significance value used for the upper limit computation.

sqrt_ts_threshold_ulfloat, optional

Threshold on the square root of the likelihood value above which upper limits should be used.

n_sigma_sensitivityfloat, optional

Sigma number for which the flux sensitivity is computed

targetTargetMetaData, optional

General metadata information about the target.

creationCreatorMetaData, optional

The creation metadata.

optionaldict, optional

additional optional metadata.

Notethese quantities are serialized in FITS header with the keywords stored in the dictionary FLUX_METADATA_FITS_KEYS

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Attributes Summary

model_computed_fields

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

model_config

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

model_extra

Get extra fields set during validation.

model_fields

Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].

model_fields_set

Returns the set of fields that have been explicitly set on this model instance.

tag

Returns MetaData tag.

Methods Summary

construct([_fields_set])

copy(*[, include, exclude, update, deep])

Returns a copy of the model.

dict(*[, include, exclude, by_alias, ...])

from_header(header[, format])

Import MetaData from a FITS header.

from_orm(obj)

json(*[, include, exclude, by_alias, ...])

model_construct([_fields_set])

Creates a new instance of the Model class with validated data.

model_copy(*[, update, deep])

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

model_dump(*[, mode, include, exclude, ...])

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

model_dump_json(*[, indent, include, ...])

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

model_json_schema([by_alias, ref_template, ...])

Generates a JSON schema for a model class.

model_parametrized_name(params)

Compute the class name for parametrizations of generic classes.

model_post_init(_BaseModel__context)

Override this method to perform additional initialization after __init__ and model_construct.

model_rebuild(*[, force, raise_errors, ...])

Try to rebuild the pydantic-core schema for the model.

model_validate(obj, *[, strict, ...])

Validate a pydantic model instance.

model_validate_json(json_data, *[, strict, ...])

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

model_validate_strings(obj, *[, strict, context])

Validate the given object contains string data against the Pydantic model.

parse_file(path, *[, content_type, ...])

parse_obj(obj)

parse_raw(b, *[, content_type, encoding, ...])

schema([by_alias, ref_template])

schema_json(*[, by_alias, ref_template])

to_header([format])

Export MetaData to a FITS header.

to_yaml()

Dump metadata content to yaml.

update_forward_refs(**localns)

validate(value)

Attributes Documentation

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}#

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}#

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

model_extra#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'creation': FieldInfo(annotation=Union[CreatorMetaData, NoneType], required=False, default=CreatorMetaData(creator='Gammapy 1.2', date=<Time object: scale='utc' format='datetime' value=2024-02-29 10:21:41.167622>, origin=None)), 'n_sigma': FieldInfo(annotation=Union[float, NoneType], required=False), 'n_sigma_sensitivity': FieldInfo(annotation=Union[float, NoneType], required=False), 'n_sigma_ul': FieldInfo(annotation=Union[float, NoneType], required=False), 'optional': FieldInfo(annotation=Union[dict, NoneType], required=False), 'sed_type': FieldInfo(annotation=Union[SEDTYPEEnum, NoneType], required=False), 'sed_type_init': FieldInfo(annotation=Union[SEDTYPEEnum, NoneType], required=False), 'sqrt_ts_threshold_ul': FieldInfo(annotation=Union[float, NoneType], required=False), 'target': FieldInfo(annotation=Union[TargetMetaData, NoneType], required=False)}#

Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].

This replaces Model.__fields__ from Pydantic V1.

model_fields_set#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

tag#

Returns MetaData tag.

Methods Documentation

classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
classmethod from_header(header, format='gadf')#

Import MetaData from a FITS header.

Conversion is performed following the definition in the METADATA_FITS_EXPORT_KEYS.

Parameters
headerdict

The header dictionary.

format{‘gadf’}

Header format. Default is ‘gadf’.

classmethod from_orm(obj: Any) Model#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = 'allow' was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: typing_extensions.Literal[validation, serialization] = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], ...]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model#
classmethod schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}') Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str#
to_header(format='gadf')#

Export MetaData to a FITS header.

Conversion is performed following the definition in the METADATA_FITS_EXPORT_KEYS.

Parameters
format{‘gadf’}

Header format. Default is ‘gadf’.

Returns
headerdict

The header dictionary.

to_yaml()#

Dump metadata content to yaml.

classmethod update_forward_refs(**localns: Any) None#
classmethod validate(value: Any) Model#