PriorParameters#
- class gammapy.modeling.PriorParameters(parameters=None)[source]#
Bases:
gammapy.modeling.parameter.Parameters
Attributes Summary
List of free parameters.
Parameter maxima as a
numpy.ndarray
.Parameter minima as a
numpy.ndarray
.List of parameter names.
List of norm parameters.
Parameter types.
Unique parameters as a
Parameters
object.Parameter values as a
numpy.ndarray
.Methods Summary
Autoscale all parameters.
Check parameter limits and emit a warning.
copy
()Deep copy.
count
(value)Freeze all parameters.
from_dict
(data)from_stack
(parameters_list)Create
Parameters
by stacking a list of otherParameters
objects.index
(val)Get position index for a given parameter.
restore_status
([restore_values])Context manager to restore status.
select
([name, type, frozen])Create a mask of models, true if all conditions are verified.
set_parameter_factors
(factors)Set factor of all parameters.
to_dict
()to_table
()Convert parameter attributes to
Table
.Unfreeze all parameters (even those frozen by default).
Attributes Documentation
- free_parameters#
List of free parameters.
- max#
Parameter maxima as a
numpy.ndarray
.
- min#
Parameter minima as a
numpy.ndarray
.
- names#
List of parameter names.
- norm_parameters#
List of norm parameters.
- prior#
- types#
Parameter types.
- unique_parameters#
Unique parameters as a
Parameters
object.
- value#
Parameter values as a
numpy.ndarray
.
Methods Documentation
- autoscale()#
Autoscale all parameters.
See
autoscale()
.
- check_limits()#
Check parameter limits and emit a warning.
- copy()#
Deep copy.
- count(value) integer -- return number of occurrences of value #
- freeze_all()#
Freeze all parameters.
- classmethod from_stack(parameters_list)#
Create
Parameters
by stacking a list of otherParameters
objects.- Parameters
- parameters_listlist of
Parameters
List of
Parameters
objects.
- parameters_listlist of
- index(val)#
Get position index for a given parameter.
The input can be a parameter object, parameter name (str) or if a parameter index (int) is passed in, it is simply returned.
- prior_stat_sum()#
- restore_status(restore_values=True)#
Context manager to restore status.
A copy of the values is made on enter, and those values are restored on exit.
- Parameters
- restore_valuesbool, optional
Restore values if True, otherwise restore only frozen status. Default is None.
Examples
>>> from gammapy.modeling.models import PowerLawSpectralModel >>> pwl = PowerLawSpectralModel(index=2) >>> with pwl.parameters.restore_status(): ... pwl.parameters["index"].value = 3 >>> print(pwl.parameters["index"].value)
- select(name=None, type=None, frozen=None)#
Create a mask of models, true if all conditions are verified.
- Parameters
- namestr or list, optional
Name of the parameter. Default is None.
- type{None, “spatial”, “spectral”, “temporal”}
Type of models. Default is None.
- frozenbool, optional
Select frozen parameters if True, exclude them if False. Default is None.
- Returns
- parameters
Parameters
Selected parameters.
- parameters
- set_parameter_factors(factors)#
Set factor of all parameters.
Used in the optimizer interface.
- to_dict()#
- unfreeze_all()#
Unfreeze all parameters (even those frozen by default).