EDispKernel#
- class gammapy.irf.EDispKernel(axes, data=0, unit='', is_pointlike=False, fov_alignment=FoVAlignment.RADEC, meta=None, interp_kwargs=None)[source]#
Bases:
gammapy.irf.core.IRF
Energy dispersion matrix.
Data format specification: RMF.
- Parameters
Examples
Create a Gaussian energy dispersion matrix:
>>> from gammapy.maps import MapAxis >>> from gammapy.irf import EDispKernel >>> energy = MapAxis.from_energy_bounds(0.1, 10, 10, unit='TeV') >>> energy_true = MapAxis.from_energy_bounds(0.1, 10, 10, unit='TeV', name='energy_true') >>> edisp = EDispKernel.from_gauss(energy_axis_true=energy_true, energy_axis=energy, sigma=0.1, bias=0)
Have a quick look:
>>> print(edisp) EDispKernel ----------- axes : ['energy_true', 'energy'] shape : (10, 10) ndim : 2 unit : dtype : float64 >>> edisp.peek()
Attributes Summary
MapAxes
.Default Interpolation kwargs for
IRF
.Alignment of the field of view coordinate axes, see
FoVAlignment
.Whether the IRF explicitly depends on offset.
Whether the IRF is pointlike of full containment.
Energy dispersion PDF matrix as a
ndarray
.Quantity as a
Quantity
object.Map unit as a
Unit
object.Methods Summary
cumsum
(axis_name)Compute cumsum along a given axis.
evaluate
([method])Evaluate IRF.
from_diagonal_response
(energy_axis_true[, ...])Create energy dispersion from a diagonal response, i.e. perfect energy resolution.
from_gauss
(energy_axis_true, energy_axis, ...)Create Gaussian energy dispersion matrix (
EnergyDispersion
).from_hdulist
(hdulist[, hdu1, hdu2])Create
EnergyDispersion
object fromHDUList
.from_table
(table[, format])Read from
Table
.get_bias
(energy_true)Get reconstruction bias for a given true energy.
get_bias_energy
(bias[, energy_min, energy_max])Find energy corresponding to a given bias.
get_mean
(energy_true)Get mean reconstructed energy for a given true energy.
get_resolution
(energy_true)Get energy resolution for a given true energy.
integral
(axis_name, **kwargs)Compute integral along a given axis.
integrate_log_log
(axis_name, **kwargs)Integrate along a given axis.
interp_missing_data
(axis_name)Interpolate missing data along a given axis.
is_allclose
(other[, rtol_axes, atol_axes])Compare two data IRFs for equivalency.
normalize
(axis_name)Normalise data in place along a given axis.
pad
(pad_width, axis_name, **kwargs)Pad IRF along a given axis.
pdf_in_safe_range
(lo_threshold, hi_threshold)PDF matrix with bins outside threshold set to 0.
peek
([figsize])Quick-look summary plots.
plot_bias
([ax])Plot reconstruction bias.
plot_matrix
([ax, add_cbar, axes_loc, ...])Plot PDF matrix.
read
(filename[, hdu1, hdu2, checksum])Read from file.
slice_by_idx
(slices)Slice sub IRF from IRF object.
to_hdulist
([format])Convert RMF to FITS HDU list format.
to_image
([lo_threshold, hi_threshold])Return a 2D edisp by summing the pdf matrix over the ereco axis.
to_table
([format])Convert to
Table
.to_table_hdu
([format])Convert to
BinTableHDU
.to_unit
(unit)Convert IRF to different unit.
write
(filename[, format, checksum])Write to file.
Attributes Documentation
- axes#
MapAxes
.
- data#
- default_interp_kwargs = {'bounds_error': False, 'fill_value': 0, 'method': 'nearest'}#
Default Interpolation kwargs for
IRF
. Fill zeros and do not interpolate
- fov_alignment#
Alignment of the field of view coordinate axes, see
FoVAlignment
.
- has_offset_axis#
Whether the IRF explicitly depends on offset.
- is_pointlike#
Whether the IRF is pointlike of full containment.
- pdf_matrix#
Energy dispersion PDF matrix as a
ndarray
.Rows (first index): True Energy Columns (second index): Reco Energy
- required_axes = ['energy_true', 'energy']#
- tag = 'edisp_kernel'#
Methods Documentation
- cumsum(axis_name)#
Compute cumsum along a given axis.
- Parameters
- axis_namestr
Along which axis to integrate.
- Returns
- irf
IRF
Cumsum IRF.
- irf
- evaluate(method=None, **kwargs)#
Evaluate IRF.
- Parameters
- **kwargsdict
Coordinates at which to evaluate the IRF.
- methodstr {‘linear’, ‘nearest’}, optional
Interpolation method.
- Returns
- array
Quantity
Interpolated values.
- array
- classmethod from_diagonal_response(energy_axis_true, energy_axis=None)[source]#
Create energy dispersion from a diagonal response, i.e. perfect energy resolution.
This creates the matrix corresponding to a perfect energy response. It contains ones where the energy_true center is inside the e_reco bin. It is a square diagonal matrix if energy_true = e_reco.
This is useful in cases where code always applies an edisp, but you don’t want it to do anything.
- Parameters
Examples
If
energy_true
equalsenergy
, you get a diagonal matrix:>>> from gammapy.irf import EDispKernel >>> from gammapy.maps import MapAxis >>> import astropy.units as u
>>> energy_true_axis = MapAxis.from_energy_edges( ... [0.5, 1, 2, 4, 6] * u.TeV, name="energy_true" ... ) >>> edisp = EDispKernel.from_diagonal_response(energy_true_axis) >>> edisp.plot_matrix()
Example with different energy binnings:
>>> energy_true_axis = MapAxis.from_energy_edges( ... [0.5, 1, 2, 4, 6] * u.TeV, name="energy_true" ... ) >>> energy_axis = MapAxis.from_energy_edges([2, 4, 6] * u.TeV) >>> edisp = EDispKernel.from_diagonal_response(energy_true_axis, energy_axis) >>> edisp.plot_matrix()
- classmethod from_gauss(energy_axis_true, energy_axis, sigma, bias, pdf_threshold=1e-06)[source]#
Create Gaussian energy dispersion matrix (
EnergyDispersion
).Calls
gammapy.irf.EnergyDispersion2D.from_gauss()
.- Parameters
- energy_axis_true
Quantity
Bin edges of true energy axis.
- energy_axis
Quantity
Bin edges of reconstructed energy axis.
- biasfloat or
ndarray
Center of Gaussian energy dispersion, bias.
- sigmafloat or
ndarray
RMS width of Gaussian energy dispersion, resolution.
- pdf_thresholdfloat, optional
Zero suppression threshold. Default is 1e-6.
- energy_axis_true
- Returns
- edisp
EDispKernel
Energy dispersion kernel.
- edisp
- classmethod from_hdulist(hdulist, hdu1='MATRIX', hdu2='EBOUNDS')[source]#
Create
EnergyDispersion
object fromHDUList
.- Parameters
- hdulist
HDUList
HDU list with
MATRIX
andEBOUNDS
extensions.- hdu1str, optional
HDU containing the energy dispersion matrix. Default is “MATRIX”.
- hdu2str, optional
HDU containing the energy axis information. Default is “EBOUNDS”.
- hdulist
- get_bias(energy_true)[source]#
Get reconstruction bias for a given true energy.
Bias is defined as
\[\frac{E_{reco}-E_{true}}{E_{true}}\]- Parameters
- energy_true
Quantity
True energy.
- energy_true
- get_bias_energy(bias, energy_min=None, energy_max=None)[source]#
Find energy corresponding to a given bias.
In case the solution is not unique, provide the
energy_min
orenergy_max
arguments to limit the solution to the given range. By default, the peak energy of the bias is chosen asenergy_min
.
- get_resolution(energy_true)[source]#
Get energy resolution for a given true energy.
The resolution is given as a percentage of the true energy.
- Parameters
- energy_true
Quantity
True energy.
- energy_true
- integral(axis_name, **kwargs)#
Compute integral along a given axis.
This method uses interpolation of the cumulative sum.
- Parameters
- axis_namestr
Along which axis to integrate.
- **kwargsdict
Coordinates at which to evaluate the IRF.
- Returns
- array
Quantity
Returns 2D array with axes offset.
- array
- integrate_log_log(axis_name, **kwargs)#
Integrate along a given axis.
This method uses log-log trapezoidal integration.
- Parameters
- axis_namestr
Along which axis to integrate.
- **kwargsdict
Coordinates at which to evaluate the IRF.
- Returns
- array
Quantity
Returns 2D array with axes offset.
- array
- interp_missing_data(axis_name)#
Interpolate missing data along a given axis.
- is_allclose(other, rtol_axes=0.001, atol_axes=1e-06, **kwargs)#
Compare two data IRFs for equivalency.
- Parameters
- other
IRF
The IRF to compare against.
- rtol_axesfloat, optional
Relative tolerance for the axis comparison. Default is 1e-3.
- atol_axesfloat, optional
Absolute tolerance for the axis comparison. Default is 1e-6.
- **kwargsdict
Keywords passed to
numpy.allclose
.
- other
- Returns
- is_allclosebool
Whether the IRF is all close.
- normalize(axis_name)#
Normalise data in place along a given axis.
- Parameters
- axis_namestr
Along which axis to normalize.
- pad(pad_width, axis_name, **kwargs)#
Pad IRF along a given axis.
- pdf_in_safe_range(lo_threshold, hi_threshold)[source]#
PDF matrix with bins outside threshold set to 0.
- peek(figsize=(15, 5))[source]#
Quick-look summary plots.
- Parameters
- figsizetuple, optional
Size of the figure. Default is (15, 5).
- plot_matrix(ax=None, add_cbar=False, axes_loc=None, kwargs_colorbar=None, **kwargs)[source]#
Plot PDF matrix.
- Parameters
- ax
Axes
, optional Matplotlib axes. Default is None.
- add_cbarbool, optional
Add a colorbar to the plot. Default is False.
- axes_locdict, optional
Keyword arguments passed to
append_axes
.- kwargs_colorbardict, optional
Keyword arguments passed to
colorbar
.- kwargsdict
Keyword arguments passed to
pcolormesh
.
- ax
- Returns
- ax
Axes
Matplotlib axes.
- ax
- classmethod read(filename, hdu1='MATRIX', hdu2='EBOUNDS', checksum=False)[source]#
Read from file.
- Parameters
- filename
pathlib.Path
or str File to read.
- hdu1str, optional
HDU containing the energy dispersion matrix. Default is “MATRIX”.
- hdu2str, optional
HDU containing the energy axis information. Default is “EBOUNDS”.
- checksumbool
If True checks both DATASUM and CHECKSUM cards in the file headers. Default is False.
- filename
- slice_by_idx(slices)#
Slice sub IRF from IRF object.
- to_hdulist(format='ogip', **kwargs)[source]#
Convert RMF to FITS HDU list format.
- Parameters
- format{“ogip”, “ogip-sherpa”}
Format to use. Default is “ogip”.
- Returns
- hdulist
HDUList
RMF in HDU list format.
- hdulist
Notes
For more information on the RMF FITS file format see: https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/summary/cal_gen_92_002_summary.html
- to_image(lo_threshold=None, hi_threshold=None)[source]#
Return a 2D edisp by summing the pdf matrix over the ereco axis.
- to_table(format='ogip')[source]#
Convert to
Table
.The output table is in the OGIP RMF format. https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002/cal_gen_92_002.html#Tab:1 # noqa: E501
- Parameters
- format{“ogip”, “ogip-sherpa”}
Format to use. Default is “ogip”.
- Returns
- table
Table
Matrix table.
- table
- to_table_hdu(format='gadf-dl3')#
Convert to
BinTableHDU
.- Parameters
- format{“gadf-dl3”}, optional
Format specification. Default is “gadf-dl3”.
- Returns
- hdu
BinTableHDU
IRF data table HDU.
- hdu