SpectrumDataset¶
-
class
gammapy.spectrum.
SpectrumDataset
(model=None, counts=None, livetime=None, mask_fit=None, aeff=None, edisp=None, background=None, mask_safe=None)[source]¶ Bases:
gammapy.utils.fitting.Dataset
Compute spectral model fit statistic on a CountsSpectrum.
Parameters: - model :
SpectralModel
Fit model
- counts :
CountsSpectrum
Counts spectrum
- livetime : float
Livetime
- mask_fit :
ndarray
Mask to apply to the likelihood for fitting.
- aeff :
EffectiveAreaTable
Effective area
- edisp :
EnergyDispersion
Energy dispersion
- background :
CountsSpectrum
Background to use for the fit.
- mask_safe :
ndarray
Mask defining the safe data range.
Attributes Summary
data_shape
Shape of the counts data energy_range
Energy range defined by the safe mask mask
Combined fit and safe mask model
parameters
Methods Summary
copy
(self)A deep copy. fake
(self[, random_state])Simulate a fake CountsSpectrum
.likelihood
(self)Total likelihood given the current model parameters. likelihood_per_bin
(self)Likelihood per bin given the current model parameters npred
(self)Returns npred map (model + background) Attributes Documentation
-
data_shape
¶ Shape of the counts data
-
energy_range
¶ Energy range defined by the safe mask
-
mask
¶ Combined fit and safe mask
-
model
¶
-
parameters
¶
Methods Documentation
-
copy
(self)¶ A deep copy.
-
fake
(self, random_state='random-seed')[source]¶ Simulate a fake
CountsSpectrum
.Parameters: - random_state : {int, ‘random-seed’, ‘global-rng’,
RandomState
} Defines random number generator initialisation. Passed to
get_random_state
.
Returns: - spectrum :
CountsSpectrum
the fake count spectrum
- random_state : {int, ‘random-seed’, ‘global-rng’,
-
likelihood
(self)¶ Total likelihood given the current model parameters.
- model :