SpectrumDataset¶
-
class
gammapy.spectrum.SpectrumDataset(model=None, counts=None, livetime=None, mask_fit=None, aeff=None, edisp=None, background=None, mask_safe=None)[source]¶ Bases:
gammapy.utils.fitting.DatasetCompute spectral model fit statistic on a CountsSpectrum.
Parameters: - model :
SpectralModel Fit model
- counts :
CountsSpectrum Counts spectrum
- livetime : float
Livetime
- mask_fit :
ndarray Mask to apply to the likelihood for fitting.
- aeff :
EffectiveAreaTable Effective area
- edisp :
EnergyDispersion Energy dispersion
- background :
CountsSpectrum Background to use for the fit.
- mask_safe :
ndarray Mask defining the safe data range.
Attributes Summary
data_shapeShape of the counts data energy_rangeEnergy range defined by the safe mask maskCombined fit and safe mask modelparametersMethods Summary
copy(self)A deep copy. fake(self[, random_state])Simulate a fake CountsSpectrum.likelihood(self)Total likelihood given the current model parameters. likelihood_per_bin(self)Likelihood per bin given the current model parameters npred(self)Returns npred map (model + background) Attributes Documentation
-
data_shape¶ Shape of the counts data
-
energy_range¶ Energy range defined by the safe mask
-
mask¶ Combined fit and safe mask
-
model¶
-
parameters¶
Methods Documentation
-
copy(self)¶ A deep copy.
-
fake(self, random_state='random-seed')[source]¶ Simulate a fake
CountsSpectrum.Parameters: - random_state : {int, ‘random-seed’, ‘global-rng’,
RandomState} Defines random number generator initialisation. Passed to
get_random_state.
Returns: - spectrum :
CountsSpectrum the fake count spectrum
- random_state : {int, ‘random-seed’, ‘global-rng’,
-
likelihood(self)¶ Total likelihood given the current model parameters.
- model :