Source code for gammapy.estimators.flux

# Licensed under a 3-clause BSD style license - see LICENSE.rst
import logging
import numpy as np
from gammapy.datasets import Datasets
from gammapy.estimators.parameter import ParameterEstimator
from gammapy.maps import Map, MapAxis
from gammapy.modeling import Parameter
from gammapy.modeling.models import ScaleSpectralModel

log = logging.getLogger(__name__)


class FluxEstimator(ParameterEstimator):
    """Flux estimator.

    Estimates flux for a given list of datasets with their model in a given energy range.

    To estimate the model flux the amplitude of the reference spectral model is
    fitted within the energy range. The amplitude is re-normalized using the "norm" parameter,
    which specifies the deviation of the flux from the reference model in this
    energy range.

    Parameters
    ----------
    source : str or int
        For which source in the model to compute the flux.
    norm_min : float
        Minimum value for the norm used for the fit statistic profile evaluation.
    norm_max : float
        Maximum value for the norm used for the fit statistic profile evaluation.
    norm_n_values : int
        Number of norm values used for the fit statistic profile.
    norm_values : `numpy.ndarray`
        Array of norm values to be used for the fit statistic profile.
    n_sigma : int
        Sigma to use for asymmetric error computation.
    n_sigma_ul : int
        Sigma to use for upper limit computation.
    selection_optional : list of str
        Which additional quantities to estimate. Available options are:

            * "all": all the optional steps are executed
            * "errn-errp": estimate asymmetric errors.
            * "ul": estimate upper limits.
            * "scan": estimate fit statistic profiles.

        Default is None so the optional steps are not executed.
    fit : `Fit`
        Fit instance specifying the backend and fit options.
    reoptimize : bool
        Re-optimize other free model parameters. Default is False.
    """

    tag = "FluxEstimator"

    def __init__(
        self,
        source=0,
        norm_min=0.2,
        norm_max=5,
        norm_n_values=11,
        norm_values=None,
        n_sigma=1,
        n_sigma_ul=2,
        selection_optional=None,
        fit=None,
        reoptimize=False,
    ):
        self.norm_values = norm_values
        self.norm_min = norm_min
        self.norm_max = norm_max
        self.norm_n_values = norm_n_values
        self.source = source
        super().__init__(
            null_value=0,
            n_sigma=n_sigma,
            n_sigma_ul=n_sigma_ul,
            selection_optional=selection_optional,
            fit=fit,
            reoptimize=reoptimize,
        )

    def _set_norm_parameter(self, norm=None, scaled_parameter=None):
        """Define properties of the norm spectral parameter."""
        if norm is None:
            norm = Parameter("norm", 1, unit="", interp="log")

        norm.value = 1.0
        norm.frozen = False

        norm.min = scaled_parameter.min / scaled_parameter.value
        norm.max = scaled_parameter.max / scaled_parameter.value
        norm.interp = scaled_parameter.interp
        norm.scan_values = self.norm_values
        norm.scan_min = self.norm_min
        norm.scan_max = self.norm_max
        norm.scan_n_values = self.norm_n_values
        return norm

    def get_scale_model(self, models):
        """Set scale model

        Parameters
        ----------
        models : `Models`
            Models

        Returns
        -------
        model : `ScaleSpectralModel`
            Scale spectral model
        """
        ref_model = models[self.source].spectral_model
        scale_model = ScaleSpectralModel(ref_model)

        if hasattr(ref_model, "amplitude"):
            scaled_parameter = ref_model.amplitude
        else:
            scaled_parameter = ref_model.norm

        scale_model.norm = self._set_norm_parameter(scale_model.norm, scaled_parameter)
        return scale_model

    def estimate_npred_excess(self, datasets):
        """Estimate npred excess for the source.

        Parameters
        ----------
        datasets : Datasets
            Datasets

        Returns
        -------
        result : dict
            Dict with an array with one entry per dataset with the sum of the
            masked npred excess.
        """
        npred_excess = []

        for dataset in datasets:
            name = datasets.models[self.source].name
            npred_signal = dataset.npred_signal(model_name=name)
            npred = Map.from_geom(dataset.mask.geom)
            npred.stack(npred_signal)
            npred_excess.append(npred.data[dataset.mask].sum())

        return {"npred_excess": np.array(npred_excess), "datasets": datasets.names}

    def run(self, datasets):
        """Estimate flux for a given energy range.

        Parameters
        ----------
        datasets : list of `~gammapy.datasets.SpectrumDataset`
            Spectrum datasets.

        Returns
        -------
        result : dict
            Dict with results for the flux point.
        """
        datasets = Datasets(datasets)
        models = datasets.models.copy()

        model = self.get_scale_model(models)

        energy_min, energy_max = datasets.energy_ranges
        energy_axis = MapAxis.from_energy_edges([energy_min.min(), energy_max.max()])

        with np.errstate(invalid="ignore", divide="ignore"):
            result = model.reference_fluxes(energy_axis=energy_axis)
            # convert to scalar values
            result = {key: value.item() for key, value in result.items()}

        models[self.source].spectral_model = model
        datasets.models = models
        result.update(super().run(datasets, model.norm))

        # TODO: find a cleaner way of including the npred_excess info
        datasets.models[self.source].spectral_model.norm.value = result["norm"]
        result.update(self.estimate_npred_excess(datasets=datasets))
        return result