Source code for gammapy.makers.background.fov

# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""FoV background estimation."""
import logging
import numpy as np
from gammapy.maps import Map
from gammapy.modeling import Fit
from gammapy.modeling.models import FoVBackgroundModel, Model
from ..core import Maker

__all__ = ["FoVBackgroundMaker"]

log = logging.getLogger(__name__)


[docs]class FoVBackgroundMaker(Maker): """Normalize template background on the whole field-of-view. The dataset background model can be simply scaled (method="scale") or fitted (method="fit") on the dataset counts. The normalization is performed outside the exclusion mask that is passed on init. If a SkyModel is set on the input dataset and method is 'fit', it' parameters are frozen during the fov normalization fit. If the requirement (greater than) of either min_counts or min_npred_background is not satisfied, the background will not be normalised Parameters ---------- method : str in ['fit', 'scale'] the normalization method to be applied. Default 'scale'. exclusion_mask : `~gammapy.maps.WcsNDMap` Exclusion mask spectral_model : SpectralModel or str Reference norm spectral model to use for the `FoVBackgroundModel`, if none is defined on the dataset. By default, use pl-norm. min_counts : int Minimum number of counts required outside the exclusion region min_npred_background : float Minimum number of predicted background counts required outside the exclusion region """ tag = "FoVBackgroundMaker" available_methods = ["fit", "scale"] def __init__( self, method="scale", exclusion_mask=None, spectral_model="pl-norm", min_counts=0, min_npred_background=0, fit=None, ): self.method = method self.exclusion_mask = exclusion_mask self.min_counts = min_counts self.min_npred_background = min_npred_background if isinstance(spectral_model, str): spectral_model = Model.create(tag=spectral_model, model_type="spectral") if not spectral_model.is_norm_spectral_model: raise ValueError("Spectral model must be a norm spectral model") self.default_spectral_model = spectral_model if fit is None: fit = Fit() self.fit = fit @property def method(self): """Method""" return self._method @method.setter def method(self, value): """Method setter""" if value not in self.available_methods: raise ValueError( f"Not a valid method for FoVBackgroundMaker: {value}." f" Choose from {self.available_methods}" ) self._method = value
[docs] def make_default_fov_background_model(self, dataset): """Add fov background model to the model definition Parameters ---------- dataset : `~gammapy.datasets.MapDataset` Input map dataset. Returns ------- dataset : `~gammapy.datasets.MapDataset` Map dataset including background model """ bkg_model = FoVBackgroundModel( dataset_name=dataset.name, spectral_model=self.default_spectral_model.copy() ) if dataset.models is None: dataset.models = bkg_model else: dataset.models = dataset.models + bkg_model return dataset
[docs] def make_exclusion_mask(self, dataset): """Project input exclusion mask to dataset geom Parameters ---------- dataset : `~gammapy.datasets.MapDataset` Input map dataset. Returns ------- mask : `~gammapy.maps.WcsNDMap` Projected exclusion mask """ geom = dataset._geom if self.exclusion_mask: mask = self.exclusion_mask.interp_to_geom(geom=geom) else: mask = Map.from_geom(geom=geom, data=1, dtype=bool) return mask
[docs] def run(self, dataset, observation=None): """Run FoV background maker. Fit the background model norm Parameters ---------- dataset : `~gammapy.datasets.MapDataset` Input map dataset. """ mask_fit = dataset.mask_fit dataset.mask_fit = self.make_exclusion_mask(dataset) if dataset.background_model is None: dataset = self.make_default_fov_background_model(dataset) if self.method == "fit": dataset = self.make_background_fit(dataset) else: # always scale the background first dataset = self.make_background_scale(dataset) dataset.mask_fit = mask_fit return dataset
[docs] def make_background_fit(self, dataset): """Fit the FoV background model on the dataset counts data Parameters ---------- dataset : `~gammapy.datasets.MapDataset` Input dataset. Returns ------- dataset : `~gammapy.datasets.MapDataset` Map dataset with fitted background model """ # freeze all model components not related to background model models = dataset.models.select(tag="sky-model") with models.restore_status(restore_values=False): models.select(tag="sky-model").freeze() fit_result = self.fit.run(datasets=[dataset]) if not fit_result.success: log.warning( f"FoVBackgroundMaker failed. Fit did not converge for {dataset.name}. " f"Setting mask to False." ) dataset.mask_safe.data[...] = False return dataset
[docs] def make_background_scale(self, dataset): """Fit the FoV background model on the dataset counts data Parameters ---------- dataset : `~gammapy.datasets.MapDataset` Input dataset. Returns ------- dataset : `~gammapy.datasets.MapDataset` Map dataset with scaled background model """ mask = dataset.mask count_tot = dataset.counts.data[mask].sum() bkg_tot = dataset.npred_background().data[mask].sum() if count_tot <= self.min_counts: log.warning( f"FoVBackgroundMaker failed. Only {int(count_tot)} counts outside exclusion mask for {dataset.name}. " f"Setting mask to False." ) dataset.mask_safe.data[...] = False elif bkg_tot <= self.min_npred_background: log.warning( f"FoVBackgroundMaker failed. Only {int(bkg_tot)} background counts outside exclusion mask for {dataset.name}. " f"Setting mask to False." ) dataset.mask_safe.data[...] = False else: value = count_tot / bkg_tot err = np.sqrt(count_tot) / bkg_tot dataset.models[f"{dataset.name}-bkg"].spectral_model.norm.value = value dataset.models[f"{dataset.name}-bkg"].spectral_model.norm.error = err return dataset