RadMax2D¶
-
class
gammapy.irf.RadMax2D(axes, data=0, unit='', meta=None, interp_kwargs=None)[source]¶ Bases:
gammapy.irf.core.IRF2D Rad Max table.
This is not directly a IRF component but is needed as additional information for point-like IRF components when an energy or field of view dependent directional cut has been applied.
Data format specification: RAD_MAX_2D
- Parameters
- energy_axis
MapAxis Reconstructed energy axis
- offset_axis
MapAxis Field of view offset axis.
- data
Quantity Applied directional cut
- metadict
Meta data
- energy_axis
Attributes Summary
MapAxesWhether the IRF depends on offset
Whether the IRF is pointlike of full containment.
Map unit (
Unit)Methods Summary
cumsum(axis_name)Compute cumsum along a given axis
evaluate([method])Evaluate IRF
from_hdulist(hdulist[, hdu, format])Create from
HDUList.from_table(table[, format])Read from
Table.integral(axis_name, **kwargs)Compute integral along a given axis
integrate_log_log(axis_name, **kwargs)Integrate along a given axis.
interp_missing_data(axis_name)Interpolate missing data along a given axis
normalize(axis_name)Normalise data in place along a given axis.
pad(pad_width, axis_name, **kwargs)Pad irf along a given axis.
read(filename[, hdu, format])Read from file.
to_hdulist([format])to_table([format])Convert to table
to_table_hdu([format])Convert to
BinTableHDU.write(filename, *args, **kwargs)Write IRF to fits.
Attributes Documentation
-
axes¶ MapAxes
-
data¶
-
default_interp_kwargs= {'bounds_error': False, 'fill_value': 0.0}¶
-
is_offset_dependent¶ Whether the IRF depends on offset
-
is_pointlike¶ Whether the IRF is pointlike of full containment.
-
required_axes= ['energy', 'offset']¶
-
tag= 'rad_max_2d'¶
Methods Documentation
-
cumsum(axis_name)¶ Compute cumsum along a given axis
- Parameters
- axis_namestr
Along which axis to integrate.
- Returns
- irf
IRF Cumsum IRF
- irf
-
evaluate(method=None, **kwargs)¶ Evaluate IRF
- Parameters
- **kwargsdict
Coordinates at which to evaluate the IRF
- methodstr {‘linear’, ‘nearest’}, optional
Interpolation method
- Returns
- array
Quantity Interpolated values
- array
-
classmethod
from_hdulist(hdulist, hdu=None, format='gadf-dl3')¶ Create from
HDUList.- Parameters
- hdulist
HDUList HDU list
- hdustr
HDU name
- format{“gadf-dl3”}
Format specification
- hdulist
- Returns
- irf
IRF IRF class
- irf
-
classmethod
from_table(table, format='gadf-dl3')¶ Read from
Table.- Parameters
- table
Table Table with irf data
- format{“gadf-dl3”}
Format specification
- table
- Returns
- irf
IRF IRF class.
- irf
-
integral(axis_name, **kwargs)¶ Compute integral along a given axis
This method uses interpolation of the cumulative sum.
- Parameters
- axis_namestr
Along which axis to integrate.
- **kwargsdict
Coordinates at which to evaluate the IRF
- Returns
- array
Quantity Returns 2D array with axes offset
- array
-
integrate_log_log(axis_name, **kwargs)¶ Integrate along a given axis.
This method uses log-log trapezoidal integration.
- Parameters
- axis_namestr
Along which axis to integrate.
- **kwargsdict
Coordinates at which to evaluate the IRF
- Returns
- array
Quantity Returns 2D array with axes offset
- array
-
interp_missing_data(axis_name)¶ Interpolate missing data along a given axis
-
normalize(axis_name)¶ Normalise data in place along a given axis.
- Parameters
- axis_namestr
Along which axis to normalize.
-
pad(pad_width, axis_name, **kwargs)¶ Pad irf along a given axis.
- Parameters
- pad_width{sequence, array_like, int}
Number of pixels padded to the edges of each axis.
- axis_namestr
Which axis to downsample. By default spatial axes are padded.
- **kwargsdict
Keyword argument forwarded to
pad
- Returns
- irf
IRF Padded irf
- irf
-
classmethod
read(filename, hdu=None, format='gadf-dl3')¶ Read from file.
- Parameters
- filenamestr or
Path Filename
- hdustr
HDU name
- format{“gadf-dl3”}
Format specification
- filenamestr or
- Returns
- irf
IRF IRF class
- irf
-
to_hdulist(format='gadf-dl3')¶
-
to_table(format='gadf-dl3')¶ Convert to table
- Parameters
- format{“gadf-dl3”}
Format specification
- Returns
- table
Table IRF data table
- table
-
to_table_hdu(format='gadf-dl3')¶ Convert to
BinTableHDU.- Parameters
- format{“gadf-dl3”}
Format specification
- Returns
- hdu
BinTableHDU IRF data table hdu
- hdu