Parameters¶
-
class
gammapy.modeling.Parameters(parameters=None)[source]¶ Bases:
collections.abc.SequenceParameters container.
List of
Parameterobjects.Covariance matrix.
- Parameters
- parameterslist of
Parameter List of parameters
- parameterslist of
Attributes Summary
List of free parameters
Parameter maxima (
numpy.ndarray).Parameter mins (
numpy.ndarray).List of parameter names
Parameter types
Unique parameters (
Parameters).Parameter values (
numpy.ndarray).Methods Summary
Autoscale all parameters.
Check parameter limits and emit a warning
copy()A deep copy
count(value)Freeze all parameters
from_dict(data)from_stack(parameters_list)Create
Parametersby stacking a list of otherParametersobjects.index(val)Get position index for a given parameter.
restore_status([restore_values])Context manager to restore status.
select([name, type, frozen])Create a mask of models, true if all conditions are verified
set_parameter_factors(factors)Set factor of all parameters.
to_dict()to_table()Convert parameter attributes to
Table.Unfreeze all parameters (even those frozen by default)
Attributes Documentation
-
free_parameters¶ List of free parameters
-
max¶ Parameter maxima (
numpy.ndarray).
-
min¶ Parameter mins (
numpy.ndarray).
-
names¶ List of parameter names
-
types¶ Parameter types
-
unique_parameters¶ Unique parameters (
Parameters).
-
value¶ Parameter values (
numpy.ndarray).
Methods Documentation
-
autoscale()[source]¶ Autoscale all parameters.
See
autoscale()
-
count(value) → integer -- return number of occurrences of value¶
-
classmethod
from_stack(parameters_list)[source]¶ Create
Parametersby stacking a list of otherParametersobjects.- Parameters
- parameters_listlist of
Parameters List of
Parametersobjects
- parameters_listlist of
-
index(val)[source]¶ Get position index for a given parameter.
The input can be a parameter object, parameter name (str) or if a parameter index (int) is passed in, it is simply returned.
-
restore_status(restore_values=True)[source]¶ Context manager to restore status.
A copy of the values is made on enter, and those values are restored on exit.
- Parameters
- restore_valuesbool
Restore values if True, otherwise restore only frozen status.
Examples
from gammapy.modeling.models import PowerLawSpectralModel pwl = PowerLawSpectralModel(index=2) with pwl.parameters.restore_status(): pwl.parameters["index"].value = 3 print(pwl.parameters["index"].value)
-
select(name=None, type=None, frozen=None)[source]¶ Create a mask of models, true if all conditions are verified
- Parameters
- namestr or list
Name of the parameter
- type{None, spatial, spectral, temporal}
type of models
- frozenbool
Select frozen parameters if True, exclude them if False.
- Returns
- parameters
Parameters Selected parameters
- parameters