DiskSpatialModel¶
-
class
gammapy.modeling.models.DiskSpatialModel(**kwargs)[source]¶ Bases:
gammapy.modeling.models.SpatialModelConstant disk model.
For more information see Disk spatial model.
- Parameters
- lon_0, lat_0
Angle Center position
- r_0
Angle \(a\): length of the major semiaxis, in angular units.
- e
float Eccentricity of the ellipse (\(0< e< 1\)).
- phi
Angle Rotation angle \(\phi\): of the major semiaxis. Increases counter-clockwise from the North direction.
- edge_widthfloat
Width of the edge. The width is defined as the range within which the smooth edge of the model drops from 95% to 5% of its amplitude. It is given as fraction of r_0.
- frame{“icrs”, “galactic”}
Center position coordinate frame
- lon_0, lat_0
Attributes Summary
A model parameter.
A model parameter.
Minimal evaluation bin size (
Angle).Evaluation radius (
Angle).Evaluation region
Frozen status of a model, True if all parameters are frozen
A model parameter.
A model parameter.
Parameters (
Parameters)A model parameter.
Spatial model center position (
SkyCoord)Get 95% containment position error as (
EllipseSkyRegion)Spatial model center position
(lon, lat)in rad and frame of the modelA model parameter.
Methods Summary
__call__(lon, lat[, energy])Call evaluate method
copy()A deep copy.
evaluate(lon, lat, lon_0, lat_0, r_0, e, …)Evaluate model.
evaluate_geom(geom)Evaluate model on
Geomfreeze()Freeze all parameters
from_dict(data)from_parameters(parameters, **kwargs)Create model from parameter list
from_position(position, **kwargs)Define the position of the model using a sky coord
integrate_geom(geom[, oversampling_factor])Integrate model on
GeomorRegionGeom.plot([ax, geom])Plot spatial model.
plot_error([ax])Plot position error
plot_grid([geom])Plot spatial model energy slices in a grid.
plot_interative([ax, geom])Plot spatial model.
reassign(datasets_names, new_datasets_names)Reassign a model from one dataset to another
to_dict([full_output])Create dict for YAML serilisation
to_region(**kwargs)Model outline (
EllipseSkyRegion).unfreeze()Restore parameters frozen status to default
Attributes Documentation
-
covariance¶
-
default_parameters= <gammapy.modeling.parameter.Parameters object>¶
-
e¶ A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value,quantityorminandmaxproperties and consider the fact that there is afactor`andscalean implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor,factor_minandfactor_maxproperties, i.e. the optimiser “sees” the well-scaled problem.- Parameters
- namestr
Name
- valuefloat or
Quantity Value
- scalefloat, optional
Scale (sometimes used in fitting)
- unit
Unitor str, optional Unit
- minfloat, optional
Minimum (sometimes used in fitting)
- maxfloat, optional
Maximum (sometimes used in fitting)
- frozenbool, optional
Frozen? (used in fitting)
- errorfloat
Parameter error
- scan_minfloat
Minimum value for the parameter scan. Overwrites scan_n_sigma.
- scan_maxfloat
Minimum value for the parameter scan. Overwrites scan_n_sigma.
- scan_n_values: int
Number of values to be used for the parameter scan.
- scan_n_sigmaint
Number of sigmas to scan.
- scan_values: `numpy.array`
Scan values. Overwrites all of the scan keywords before.
- scale_method{‘scale10’, ‘factor1’, None}
Method used to set
factorandscale- interp{“lin”, “sqrt”, “log”}
Parameter scaling to use for the scan.
-
edge_width¶ A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value,quantityorminandmaxproperties and consider the fact that there is afactor`andscalean implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor,factor_minandfactor_maxproperties, i.e. the optimiser “sees” the well-scaled problem.- Parameters
- namestr
Name
- valuefloat or
Quantity Value
- scalefloat, optional
Scale (sometimes used in fitting)
- unit
Unitor str, optional Unit
- minfloat, optional
Minimum (sometimes used in fitting)
- maxfloat, optional
Maximum (sometimes used in fitting)
- frozenbool, optional
Frozen? (used in fitting)
- errorfloat
Parameter error
- scan_minfloat
Minimum value for the parameter scan. Overwrites scan_n_sigma.
- scan_maxfloat
Minimum value for the parameter scan. Overwrites scan_n_sigma.
- scan_n_values: int
Number of values to be used for the parameter scan.
- scan_n_sigmaint
Number of sigmas to scan.
- scan_values: `numpy.array`
Scan values. Overwrites all of the scan keywords before.
- scale_method{‘scale10’, ‘factor1’, None}
Method used to set
factorandscale- interp{“lin”, “sqrt”, “log”}
Parameter scaling to use for the scan.
-
evaluation_bin_size_min¶ Minimal evaluation bin size (
Angle).The bin min size is defined as r_0*(1-edge_width)/10.
-
evaluation_radius¶ Evaluation radius (
Angle).Set to the length of the semi-major axis plus the edge width.
-
evaluation_region¶ Evaluation region
-
frozen¶ Frozen status of a model, True if all parameters are frozen
-
is_energy_dependent¶
-
lat_0¶ A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value,quantityorminandmaxproperties and consider the fact that there is afactor`andscalean implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor,factor_minandfactor_maxproperties, i.e. the optimiser “sees” the well-scaled problem.- Parameters
- namestr
Name
- valuefloat or
Quantity Value
- scalefloat, optional
Scale (sometimes used in fitting)
- unit
Unitor str, optional Unit
- minfloat, optional
Minimum (sometimes used in fitting)
- maxfloat, optional
Maximum (sometimes used in fitting)
- frozenbool, optional
Frozen? (used in fitting)
- errorfloat
Parameter error
- scan_minfloat
Minimum value for the parameter scan. Overwrites scan_n_sigma.
- scan_maxfloat
Minimum value for the parameter scan. Overwrites scan_n_sigma.
- scan_n_values: int
Number of values to be used for the parameter scan.
- scan_n_sigmaint
Number of sigmas to scan.
- scan_values: `numpy.array`
Scan values. Overwrites all of the scan keywords before.
- scale_method{‘scale10’, ‘factor1’, None}
Method used to set
factorandscale- interp{“lin”, “sqrt”, “log”}
Parameter scaling to use for the scan.
-
lon_0¶ A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value,quantityorminandmaxproperties and consider the fact that there is afactor`andscalean implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor,factor_minandfactor_maxproperties, i.e. the optimiser “sees” the well-scaled problem.- Parameters
- namestr
Name
- valuefloat or
Quantity Value
- scalefloat, optional
Scale (sometimes used in fitting)
- unit
Unitor str, optional Unit
- minfloat, optional
Minimum (sometimes used in fitting)
- maxfloat, optional
Maximum (sometimes used in fitting)
- frozenbool, optional
Frozen? (used in fitting)
- errorfloat
Parameter error
- scan_minfloat
Minimum value for the parameter scan. Overwrites scan_n_sigma.
- scan_maxfloat
Minimum value for the parameter scan. Overwrites scan_n_sigma.
- scan_n_values: int
Number of values to be used for the parameter scan.
- scan_n_sigmaint
Number of sigmas to scan.
- scan_values: `numpy.array`
Scan values. Overwrites all of the scan keywords before.
- scale_method{‘scale10’, ‘factor1’, None}
Method used to set
factorandscale- interp{“lin”, “sqrt”, “log”}
Parameter scaling to use for the scan.
-
parameters¶ Parameters (
Parameters)
-
phi¶ A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value,quantityorminandmaxproperties and consider the fact that there is afactor`andscalean implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor,factor_minandfactor_maxproperties, i.e. the optimiser “sees” the well-scaled problem.- Parameters
- namestr
Name
- valuefloat or
Quantity Value
- scalefloat, optional
Scale (sometimes used in fitting)
- unit
Unitor str, optional Unit
- minfloat, optional
Minimum (sometimes used in fitting)
- maxfloat, optional
Maximum (sometimes used in fitting)
- frozenbool, optional
Frozen? (used in fitting)
- errorfloat
Parameter error
- scan_minfloat
Minimum value for the parameter scan. Overwrites scan_n_sigma.
- scan_maxfloat
Minimum value for the parameter scan. Overwrites scan_n_sigma.
- scan_n_values: int
Number of values to be used for the parameter scan.
- scan_n_sigmaint
Number of sigmas to scan.
- scan_values: `numpy.array`
Scan values. Overwrites all of the scan keywords before.
- scale_method{‘scale10’, ‘factor1’, None}
Method used to set
factorandscale- interp{“lin”, “sqrt”, “log”}
Parameter scaling to use for the scan.
-
phi_0¶
-
position¶ Spatial model center position (
SkyCoord)
-
position_error¶ Get 95% containment position error as (
EllipseSkyRegion)
-
position_lonlat¶ Spatial model center position
(lon, lat)in rad and frame of the model
-
r_0¶ A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value,quantityorminandmaxproperties and consider the fact that there is afactor`andscalean implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor,factor_minandfactor_maxproperties, i.e. the optimiser “sees” the well-scaled problem.- Parameters
- namestr
Name
- valuefloat or
Quantity Value
- scalefloat, optional
Scale (sometimes used in fitting)
- unit
Unitor str, optional Unit
- minfloat, optional
Minimum (sometimes used in fitting)
- maxfloat, optional
Maximum (sometimes used in fitting)
- frozenbool, optional
Frozen? (used in fitting)
- errorfloat
Parameter error
- scan_minfloat
Minimum value for the parameter scan. Overwrites scan_n_sigma.
- scan_maxfloat
Minimum value for the parameter scan. Overwrites scan_n_sigma.
- scan_n_values: int
Number of values to be used for the parameter scan.
- scan_n_sigmaint
Number of sigmas to scan.
- scan_values: `numpy.array`
Scan values. Overwrites all of the scan keywords before.
- scale_method{‘scale10’, ‘factor1’, None}
Method used to set
factorandscale- interp{“lin”, “sqrt”, “log”}
Parameter scaling to use for the scan.
-
tag= ['DiskSpatialModel', 'disk']¶
-
type¶
Methods Documentation
-
__call__(lon, lat, energy=None)¶ Call evaluate method
-
copy()¶ A deep copy.
-
freeze()¶ Freeze all parameters
-
classmethod
from_dict(data)¶
-
classmethod
from_parameters(parameters, **kwargs)¶ Create model from parameter list
- Parameters
- parameters
Parameters Parameters for init
- parameters
- Returns
- model
Model Model instance
- model
-
classmethod
from_position(position, **kwargs)¶ Define the position of the model using a sky coord
- Parameters
- position
SkyCoord Position
- position
- Returns
- model
SpatialModel Spatial model
- model
-
integrate_geom(geom, oversampling_factor=None)¶ Integrate model on
GeomorRegionGeom.Integration is performed by simple rectangle approximation, the pixel center model value is multiplied by the pixel solid angle. An oversampling factor can be used for precision. By default, this parameter is set to None and an oversampling factor is automatically estimated based on the model estimation maximal bin width.
For a RegionGeom, the model is integrated on a tangent WCS projection in the region.
- Parameters
- geom
WcsGeomorRegionGeom The geom on which the integration is performed
- oversampling_factorint or None
The oversampling factor to use for integration. Default is None: the factor is estimated from the model minimimal bin size
- geom
- Returns
Maporgammapy.maps.RegionNDMap, containingthe integral value in each spatial bin.
-
plot(ax=None, geom=None, **kwargs)¶ Plot spatial model.
-
plot_error(ax=None, **kwargs)¶ Plot position error
-
plot_grid(geom=None, **kwargs)¶ Plot spatial model energy slices in a grid.
-
plot_interative(ax=None, geom=None, **kwargs)¶ Plot spatial model.
-
reassign(datasets_names, new_datasets_names)¶ Reassign a model from one dataset to another
- Parameters
- datasets_namesstr or list
Name of the datasets where the model is currently defined
- new_datasets_namesstr or list
Name of the datasets where the model should be defined instead. If multiple names are given the two list must have the save length, as the reassignment is element-wise.
- Returns
- model
Model Reassigned model.
- model
-
to_dict(full_output=False)¶ Create dict for YAML serilisation
-
to_region(**kwargs)[source]¶ Model outline (
EllipseSkyRegion).
-
unfreeze()¶ Restore parameters frozen status to default