FluxPointsDataset¶
-
class
gammapy.datasets.FluxPointsDataset(models=None, data=None, mask_fit=None, mask_safe=None, name=None, meta_table=None)[source]¶ Bases:
gammapy.datasets.DatasetFit a set of flux points with a parametric model.
- Parameters
- models
Models Models (only spectral part needs to be set)
- data
FluxPoints Flux points.
- mask_fit
numpy.ndarray Mask to apply for fitting
- mask_safe
numpy.ndarray Mask defining the safe data range. By default upper limit values are excluded.
- meta_table
Table Table listing information on observations used to create the dataset. One line per observation for stacked datasets.
- models
Examples
Load flux points from file and fit with a power-law model:
from gammapy.modeling import Fit from gammapy.modeling.models import PowerLawSpectralModel, SkyModel from gammapy.estimators import FluxPoints from gammapy.datasets import FluxPointsDataset filename = "$GAMMAPY_DATA/tests/spectrum/flux_points/diff_flux_points.fits" flux_points = FluxPoints.read(filename) model = SkyModel(spectral_model=PowerLawSpectralModel()) dataset = FluxPointsDataset(model, flux_points) fit = Fit() result = fit.run([dataset]) print(result) print(result.parameters.to_table())
Note: In order to reproduce the example you need the tests datasets folder. You may download it with the command
gammapy download datasets --tests --out $GAMMAPY_DATAAttributes Summary
Good time interval info (
GTI)Combined fit and safe mask
Methods Summary
copy([name])A deep copy.
Shape of the flux points data (tuple).
Compute predicted flux.
from_dict(data, **kwargs)Create flux point dataset from dict.
plot_fit([ax_spectrum, ax_residuals, …])Plot flux points, best fit model and residuals in two panels.
plot_residuals([ax, method])Plot flux point residuals.
plot_spectrum([ax, kwargs_fp, kwargs_model])Plot spectrum including flux points and model.
residuals([method])Compute the flux point residuals ().
Fit statistic array.
stat_sum()Total statistic given the current model parameters.
to_dict()Convert to dict for YAML serialization.
write(filename[, overwrite])Write flux point dataset to file.
Attributes Documentation
-
gti¶ Good time interval info (
GTI)
-
mask¶ Combined fit and safe mask
-
models¶
-
name¶
-
stat_type= 'chi2'¶
-
tag= 'FluxPointsDataset'¶
Methods Documentation
-
copy(name=None)¶ A deep copy.
- Parameters
- namestr
Name of the copied dataset
- Returns
- dataset
Dataset Copied datasets.
- dataset
-
classmethod
from_dict(data, **kwargs)[source]¶ Create flux point dataset from dict.
- Parameters
- datadict
Dict containing data to create dataset from.
- Returns
- dataset
FluxPointsDataset Flux point datasets.
- dataset
-
plot_fit(ax_spectrum=None, ax_residuals=None, kwargs_spectrum=None, kwargs_residuals=None)[source]¶ Plot flux points, best fit model and residuals in two panels.
Calls
plot_spectrumandplot_residuals.- Parameters
- ax_spectrum
Axes Axes to plot flux points and best fit model on.
- ax_residuals
Axes Axes to plot residuals on.
- kwargs_spectrumdict
Keyword arguments passed to
plot_spectrum.- kwargs_residualsdict
Keyword arguments passed to
plot_residuals.
- ax_spectrum
- Returns
- ax_spectrum, ax_residuals
Axes Flux points, best fit model and residuals plots.
- ax_spectrum, ax_residuals
-
plot_residuals(ax=None, method='diff', **kwargs)[source]¶ Plot flux point residuals.
- Parameters
- ax
Axes Axes to plot on.
- method{“diff”, “diff/model”}
Normalization used to compute the residuals, see
FluxPointsDataset.residuals.- **kwargsdict
Keyword arguments passed to
errorbar.
- ax
- Returns
- ax
Axes Axes object.
- ax
-
plot_spectrum(ax=None, kwargs_fp=None, kwargs_model=None)[source]¶ Plot spectrum including flux points and model.
- Parameters
- ax
Axes Axes to plot on.
- kwargs_fpdict
Keyword arguments passed to
gammapy.estimators.FluxPoints.plot.- kwargs_modeldict
Keyword arguments passed to
gammapy.modeling.models.SpectralModel.plotandgammapy.modeling.models.SpectralModel.plot_error.
- ax
- Returns
- ax
Axes Axes object.
- ax
-
residuals(method='diff')[source]¶ Compute the flux point residuals ().
- Parameters
- method: {“diff”, “diff/model”}
- Method used to compute the residuals. Available options are:
diff(default): data - modeldiff/model: (data - model) / model
- Returns
- residuals
ndarray Residuals array.
- residuals
-
stat_sum()¶ Total statistic given the current model parameters.
-
to_dict()¶ Convert to dict for YAML serialization.