SkyModel¶
-
class
gammapy.modeling.models.
SkyModel
(spectral_model, spatial_model=None, temporal_model=None, name=None, apply_irf=None, datasets_names=None)[source]¶ Bases:
gammapy.modeling.models.core.ModelBase
Sky model component.
This model represents a factorised sky model. It has
Parameters
combining the spatial and spectral parameters.- Parameters
- spectral_model
SpectralModel
Spectral model
- spatial_model
SpatialModel
Spatial model (must be normalised to integrate to 1)
- temporal_model
temporalModel
Temporal model
- namestr
Model identifier
- apply_irfdict
Dictionary declaring which IRFs should be applied to this model. Options are {“exposure”: True, “psf”: True, “edisp”: True}
- datasets_nameslist of str
Which datasets this model is applied to.
- spectral_model
Attributes Summary
Minimal spatial bin size for spatial model evaluation.
Frozen status of a model, True if all parameters are frozen
Parameters (
Parameters
)Spatial model center position
(lon, lat)
in rad and frame of the modelMethods Summary
__call__
(lon, lat, energy[, time])Call self as a function.
contributes
(mask[, margin])Check if a skymodel contributes within a mask map.
copy
([name])Copy SkyModel
create
(spectral_model[, spatial_model, …])Create a model instance.
evaluate
(lon, lat, energy[, time])Evaluate the model at given points.
evaluate_geom
(geom[, gti])Evaluate model on
Geom
.freeze
([model_type])Freeze parameters depending on model type
from_dict
(data)Create SkyModel from dict
from_parameters
(parameters, **kwargs)Create model from parameter list
integrate_geom
(geom[, gti, oversampling_factor])Integrate model on
Geom
.reassign
(datasets_names, new_datasets_names)Reassign a model from one dataset to another
to_dict
([full_output])Create dict for YAML serilisation
unfreeze
([model_type])Restore parameters frozen status to default depending on model type
Attributes Documentation
-
covariance
¶
-
default_parameters
= <gammapy.modeling.parameter.Parameters object>¶
-
evaluation_bin_size_min
¶ Minimal spatial bin size for spatial model evaluation.
-
frame
¶
-
frozen
¶ Frozen status of a model, True if all parameters are frozen
-
name
¶
-
parameters
¶ Parameters (
Parameters
)
-
position_lonlat
¶ Spatial model center position
(lon, lat)
in rad and frame of the model
-
spatial_model
¶
-
spectral_model
¶
-
tag
= ['SkyModel', 'sky-model']¶
-
temporal_model
¶
-
type
¶
Methods Documentation
-
classmethod
create
(spectral_model, spatial_model=None, temporal_model=None, **kwargs)[source]¶ Create a model instance.
- Parameters
- spectral_modelstr
Tag to create spectral model
- spatial_modelstr
Tag to create spatial model
- temporal_modelstr
Tag to create temporal model
- **kwargsdict
Keyword arguments passed to
SkyModel
- Returns
- modelSkyModel
Sky model
-
evaluate
(lon, lat, energy, time=None)[source]¶ Evaluate the model at given points.
The model evaluation follows numpy broadcasting rules.
Return differential surface brightness cube. At the moment in units:
cm-2 s-1 TeV-1 deg-2
-
freeze
(model_type=None)[source]¶ Freeze parameters depending on model type
- Parameters
- model_type{None, “spatial”, “spectral”, “temporal”}
freeze all parameters or only or only spatial/spectral/temporal. Default is None so all parameters are frozen.
-
classmethod
from_parameters
(parameters, **kwargs)¶ Create model from parameter list
- Parameters
- parameters
Parameters
Parameters for init
- parameters
- Returns
- model
Model
Model instance
- model
-
integrate_geom
(geom, gti=None, oversampling_factor=None)[source]¶ Integrate model on
Geom
.See
integrate_geom
andintegral
.- Parameters
- geom
Geom
orRegionGeom
Map geometry
- gti
GTI
GIT table
- oversampling_factorint or None
The oversampling factor to use for spatial integration. Default is None: the factor is estimated from the model minimal bin size
- geom
- Returns
- flux
Map
Predicted flux map
- flux
-
reassign
(datasets_names, new_datasets_names)¶ Reassign a model from one dataset to another
- Parameters
- datasets_namesstr or list
Name of the datasets where the model is currently defined
- new_datasets_namesstr or list
Name of the datasets where the model should be defined instead. If multiple names are given the two list must have the save length, as the reassignment is element-wise.
- Returns
- model
Model
Reassigned model.
- model
-
unfreeze
(model_type=None)[source]¶ Restore parameters frozen status to default depending on model type
- Parameters
- model_type{None, “spatial”, “spectral”, “temporal”}
restore frozen status to default for all parameters or only spatial/spectral/temporal Default is None so all parameters are restore to default frozen status.