Simulating and fitting a time varying source#

Simulate and fit a time decaying light curve of a source using the CTA 1DC response.

Prerequisites#

Context#

Frequently, studies of variable sources (eg: decaying GRB light curves, AGN flares, etc.) require time variable simulations. For most use cases, generating an event list is an overkill, and it suffices to use binned simulations using a temporal model.

Objective: Simulate and fit a time decaying light curve of a source with CTA using the CTA 1DC response.

Proposed approach#

We will simulate 10 spectral datasets within given time intervals (Good Time Intervals) following a given spectral (a power law) and temporal profile (an exponential decay, with a decay time of 6 hr). These are then analysed using the light curve estimator to obtain flux points.

Modelling and fitting of lightcurves can be done either - directly on the output of the LightCurveEstimator (at the DL5 level) - fit the simulated datasets (at the DL4 level)

In summary, the necessary steps are:

  • Choose observation parameters including a list of gammapy.data.GTI

  • Define temporal and spectral models from the Model gallery as per science case

  • Perform the simulation (in 1D or 3D)

  • Extract the light curve from the reduced dataset as shown in Light curves tutorial

  • Optionally, we show here how to fit the simulated datasets using a source model

Setup#

As usual, we’ll start with some general imports…

import logging
import numpy as np
import astropy.units as u
from astropy.coordinates import SkyCoord
from astropy.time import Time

# %matplotlib inline
import matplotlib.pyplot as plt
from IPython.display import display

log = logging.getLogger(__name__)

And some gammapy specific imports

import warnings
from gammapy.data import FixedPointingInfo, Observation, observatory_locations
from gammapy.datasets import Datasets, FluxPointsDataset, SpectrumDataset
from gammapy.estimators import LightCurveEstimator
from gammapy.irf import load_irf_dict_from_file
from gammapy.makers import SpectrumDatasetMaker
from gammapy.maps import MapAxis, RegionGeom, TimeMapAxis
from gammapy.modeling import Fit
from gammapy.modeling.models import (
    ExpDecayTemporalModel,
    PowerLawSpectralModel,
    SkyModel,
)

warnings.filterwarnings(
    action="ignore", message="overflow encountered in exp", module="astropy"
)

Check setup#

from gammapy.utils.check import check_tutorials_setup

check_tutorials_setup()
System:

        python_executable      : /home/runner/work/gammapy-docs/gammapy-docs/gammapy/.tox/build_docs/bin/python
        python_version         : 3.9.20
        machine                : x86_64
        system                 : Linux


Gammapy package:

        version                : 1.3.dev1191+g4306526fa
        path                   : /home/runner/work/gammapy-docs/gammapy-docs/gammapy/.tox/build_docs/lib/python3.9/site-packages/gammapy


Other packages:

        numpy                  : 1.26.4
        scipy                  : 1.13.1
        astropy                : 5.2.2
        regions                : 0.8
        click                  : 8.1.7
        yaml                   : 6.0.2
        IPython                : 8.18.1
        jupyterlab             : not installed
        matplotlib             : 3.9.2
        pandas                 : not installed
        healpy                 : 1.17.3
        iminuit                : 2.30.1
        sherpa                 : 4.16.1
        naima                  : 0.10.0
        emcee                  : 3.1.6
        corner                 : 2.2.2
        ray                    : 2.37.0


Gammapy environment variables:

        GAMMAPY_DATA           : /home/runner/work/gammapy-docs/gammapy-docs/gammapy-datasets/dev

We first define our preferred time format:

Simulating a light curve#

We will simulate 10 spectra between 300 GeV and 10 TeV using an PowerLawSpectralModel and a ExpDecayTemporalModel. The important thing to note here is how to attach a different GTI to each dataset. Since we use spectrum datasets here, we will use a RegionGeom.

# Loading IRFs
irfs = load_irf_dict_from_file(
    "$GAMMAPY_DATA/cta-1dc/caldb/data/cta/1dc/bcf/South_z20_50h/irf_file.fits"
)

# Reconstructed and true energy axis
energy_axis = MapAxis.from_edges(
    np.logspace(-0.5, 1.0, 10), unit="TeV", name="energy", interp="log"
)
energy_axis_true = MapAxis.from_edges(
    np.logspace(-1.2, 2.0, 31), unit="TeV", name="energy_true", interp="log"
)

geom = RegionGeom.create("galactic;circle(0, 0, 0.11)", axes=[energy_axis])

# Pointing position to be supplied as a `FixedPointingInfo`
pointing = FixedPointingInfo(
    fixed_icrs=SkyCoord(0.5, 0.5, unit="deg", frame="galactic").icrs,
)
/home/runner/work/gammapy-docs/gammapy-docs/gammapy/.tox/build_docs/lib/python3.9/site-packages/astropy/units/core.py:2097: UnitsWarning: '1/s/MeV/sr' did not parse as fits unit: Numeric factor not supported by FITS If this is meant to be a custom unit, define it with 'u.def_unit'. To have it recognized inside a file reader or other code, enable it with 'u.add_enabled_units'. For details, see https://docs.astropy.org/en/latest/units/combining_and_defining.html
  warnings.warn(msg, UnitsWarning)

Note that observations are usually conducted in Wobble mode, in which the source is not in the center of the camera. This allows to have a symmetrical sky position from which background can be estimated.

# Define the source model: A combination of spectral and temporal model

gti_t0 = Time("2020-03-01")
spectral_model = PowerLawSpectralModel(
    index=3, amplitude="1e-11 cm-2 s-1 TeV-1", reference="1 TeV"
)
temporal_model = ExpDecayTemporalModel(t0="6 h", t_ref=gti_t0.mjd * u.d)

model_simu = SkyModel(
    spectral_model=spectral_model,
    temporal_model=temporal_model,
    name="model-simu",
)

# Look at the model
display(model_simu.parameters.to_table())
type    name     value         unit        error   min max frozen link prior
---- --------- ---------- -------------- --------- --- --- ------ ---- -----
         index 3.0000e+00                0.000e+00 nan nan  False
     amplitude 1.0000e-11 cm-2 s-1 TeV-1 0.000e+00 nan nan  False
     reference 1.0000e+00            TeV 0.000e+00 nan nan   True
            t0 6.0000e+00              h 0.000e+00 nan nan  False
         t_ref 5.8909e+04              d 0.000e+00 nan nan   True

Now, define the start and observation livetime wrt to the reference time, gti_t0

n_obs = 10

tstart = gti_t0 + [1, 2, 3, 5, 8, 10, 20, 22, 23, 24] * u.h
lvtm = [55, 25, 26, 40, 40, 50, 40, 52, 43, 47] * u.min

Now perform the simulations

datasets = Datasets()

empty = SpectrumDataset.create(
    geom=geom, energy_axis_true=energy_axis_true, name="empty"
)

maker = SpectrumDatasetMaker(selection=["exposure", "background", "edisp"])


for idx in range(n_obs):
    obs = Observation.create(
        pointing=pointing,
        livetime=lvtm[idx],
        tstart=tstart[idx],
        irfs=irfs,
        reference_time=gti_t0,
        obs_id=idx,
        location=observatory_locations["cta_south"],
    )
    empty_i = empty.copy(name=f"dataset-{idx}")
    dataset = maker.run(empty_i, obs)
    dataset.models = model_simu
    dataset.fake()
    datasets.append(dataset)

The reduced datasets have been successfully simulated. Let’s take a quick look into our datasets.

   name   counts       excess       ... n_fit_bins stat_type       stat_sum
                                    ...
--------- ------ ------------------ ... ---------- --------- -------------------
dataset-0    839  818.6812310184489 ...          9      cash  -6784.271224037269
dataset-1    327 317.76419591747674 ...          9      cash -2046.7695059943123
dataset-2    278  268.3947637541758 ...          9      cash -1615.1679837461577
dataset-3    310  295.2227134679628 ...          9      cash -1922.5496023301541
dataset-4    212 197.22271346796282 ...          9      cash -1108.6920367050132
dataset-5    178 159.52839183495354 ...          9      cash  -931.3038934334983
dataset-6     32  17.22271346796283 ...          9      cash  -47.88730618601528
dataset-7     28   8.78952750835169 ...          9      cash  -24.05114241937723
dataset-8     37 21.114416978060046 ...          9      cash   -79.2691872648956
dataset-9     36 18.636688324856333 ...          9      cash  -60.63956116858859

Extract the lightcurve#

This section uses standard light curve estimation tools for a 1D extraction. Only a spectral model needs to be defined in this case. Since the estimator returns the integrated flux separately for each time bin, the temporal model need not be accounted for at this stage. We extract the lightcurve in 3 energy bins.

# Define the model:
spectral_model = PowerLawSpectralModel(
    index=3, amplitude="1e-11 cm-2 s-1 TeV-1", reference="1 TeV"
)
model_fit = SkyModel(spectral_model=spectral_model, name="model-fit")

# Attach model to all datasets
datasets.models = model_fit
lc_maker_1d = LightCurveEstimator(
    energy_edges=[0.3, 0.6, 1.0, 10] * u.TeV,
    source="model-fit",
    selection_optional=["ul"],
)
lc_1d = lc_maker_1d.run(datasets)

fig, ax = plt.subplots(
    figsize=(8, 6),
    gridspec_kw={"left": 0.16, "bottom": 0.2, "top": 0.98, "right": 0.98},
)
lc_1d.plot(ax=ax, marker="o", axis_name="time", sed_type="flux")
plt.show()
light curve simulation

Fitting temporal models#

We have the reconstructed lightcurve at this point. Now we want to fit a profile to the obtained light curves, using a joint fitting across the different datasets, while simultaneously minimising across the temporal model parameters as well. The temporal models can be applied

  • directly on the obtained lightcurve

  • on the simulated datasets

Fitting the obtained light curve#

We will first convert the obtained light curve to a FluxPointsDataset and fit it with a spectral and temporal model

# Create the datasets by iterating over the returned lightcurve
dataset_fp = FluxPointsDataset(data=lc_1d, name="dataset_lc")

We will fit the amplitude, spectral index and the decay time scale. Note that t_ref should be fixed by default for the ExpDecayTemporalModel.

# Define the model:
spectral_model1 = PowerLawSpectralModel(
    index=2.0, amplitude="1e-12 cm-2 s-1 TeV-1", reference="1 TeV"
)
temporal_model1 = ExpDecayTemporalModel(t0="10 h", t_ref=gti_t0.mjd * u.d)


model = SkyModel(
    spectral_model=spectral_model1,
    temporal_model=temporal_model1,
    name="model-test",
)

dataset_fp.models = model
print(dataset_fp)
FluxPointsDataset
-----------------

  Name                            : dataset_lc

  Number of total flux points     : 30
  Number of fit bins              : 25

  Fit statistic type              : chi2
  Fit statistic value (-2 log(L)) : 1484.51

  Number of models                : 1
  Number of parameters            : 5
  Number of free parameters       : 3

  Component 0: SkyModel

    Name                      : model-test
    Datasets names            : None
    Spectral model type       : PowerLawSpectralModel
    Spatial  model type       :
    Temporal model type       : ExpDecayTemporalModel
    Parameters:
      index                         :      2.000   +/-    0.00
      amplitude                     :   1.00e-12   +/- 0.0e+00 1 / (cm2 s TeV)
      reference             (frozen):      1.000       TeV
      t0                            :     10.000   +/-    0.00 h
      t_ref                 (frozen):  58909.000       d

Fit the dataset

type    name     value         unit        error   min max frozen link prior
---- --------- ---------- -------------- --------- --- --- ------ ---- -----
         index 2.9977e+00                2.795e-02 nan nan  False
     amplitude 9.9894e-12 cm-2 s-1 TeV-1 3.435e-13 nan nan  False
     reference 1.0000e+00            TeV 0.000e+00 nan nan   True
            t0 5.9113e+00              h 2.250e-01 nan nan  False
         t_ref 5.8909e+04              d 0.000e+00 nan nan   True

Now let’s plot model and data. We plot only the normalisation of the temporal model in relative units for one particular energy range

dataset_fp.plot_spectrum(axis_name="time")
light curve simulation
<Axes: xlabel='Time [iso]', ylabel='Norm / A.U.'>

Fit the datasets#

Here, we apply the models directly to the simulated datasets.

For modelling and fitting more complex flares, you should attach the relevant model to each group of datasets. The parameters of a model in a given group of dataset will be tied. For more details on joint fitting in Gammapy, see the 3D detailed analysis.

# Define the model:
spectral_model2 = PowerLawSpectralModel(
    index=2.0, amplitude="1e-12 cm-2 s-1 TeV-1", reference="1 TeV"
)
temporal_model2 = ExpDecayTemporalModel(t0="10 h", t_ref=gti_t0.mjd * u.d)

model2 = SkyModel(
    spectral_model=spectral_model2,
    temporal_model=temporal_model2,
    name="model-test2",
)

display(model2.parameters.to_table())

datasets.models = model2
type    name     value         unit        error   min max frozen link prior
---- --------- ---------- -------------- --------- --- --- ------ ---- -----
         index 2.0000e+00                0.000e+00 nan nan  False
     amplitude 1.0000e-12 cm-2 s-1 TeV-1 0.000e+00 nan nan  False
     reference 1.0000e+00            TeV 0.000e+00 nan nan   True
            t0 1.0000e+01              h 0.000e+00 nan nan  False
         t_ref 5.8909e+04              d 0.000e+00 nan nan   True

Perform a joint fit

type    name     value         unit        error   min max frozen link prior
---- --------- ---------- -------------- --------- --- --- ------ ---- -----
         index 3.0090e+00                3.212e-02 nan nan  False
     amplitude 1.0075e-11 cm-2 s-1 TeV-1 3.527e-13 nan nan  False
     reference 1.0000e+00            TeV 0.000e+00 nan nan   True
            t0 5.8108e+00              h 2.007e-01 nan nan  False
         t_ref 5.8909e+04              d 0.000e+00 nan nan   True

We see that the fitted parameters are consistent between fitting flux points and datasets, and match well with the simulated ones

Exercises#

  1. Re-do the analysis with MapDataset instead of a SpectrumDataset

  2. Model the flare of PKS 2155-304 which you obtained using the Light curves for flares tutorial. Use a combination of a Gaussian and Exponential flare profiles.

  3. Do a joint fitting of the datasets.

Total running time of the script: (0 minutes 18.654 seconds)

Gallery generated by Sphinx-Gallery