SkyModel#
- class gammapy.modeling.models.SkyModel[source]#
Bases:
CovarianceMixin
,ModelBase
Sky model component.
This model represents a factorised sky model. It has
Parameters
combining the spatial and spectral parameters.- Parameters:
- spectral_model
SpectralModel
Spectral model.
- spatial_model
SpatialModel
Spatial model (must be normalised to integrate to 1).
- temporal_model
TemporalModel
Temporal model.
- namestr
Model identifier.
- apply_irfdict
Dictionary declaring which IRFs should be applied to this model. Options are {“exposure”: True, “psf”: True, “edisp”: True}.
- datasets_nameslist of str
Which datasets this model is applied to.
- spectral_model
Attributes Summary
Minimal spatial bin size for spatial model evaluation.
Evaluation radius as an
Angle
.Evaluation region as an
Angle
.Parameters as a
Parameters
object.List of unique parameter names.
Position as a
SkyCoord
.Spatial model center position
(lon, lat)
in radians and frame of the model.Spatial model as a
SpatialModel
object.Spectral model as a
SpectralModel
object.Temporal model as a
TemporalModel
object.Methods Summary
__call__
(lon, lat, energy[, time])Call self as a function.
contributes
(mask[, margin])Check if a sky model contributes within a mask map.
copy
([name, copy_data])Copy sky model.
create
(spectral_model[, spatial_model, ...])Create a model instance.
evaluate
(lon, lat, energy[, time])Evaluate the model at given points.
evaluate_geom
(geom[, gti])Evaluate model on
Geom
.freeze
([model_type])Freeze parameters depending on model type.
from_dict
(data, **kwargs)Create SkyModel from dictionary.
integrate_geom
(geom[, gti, oversampling_factor])Integrate model on
Geom
.to_dict
([full_output])Create dictionary for YAML serilisation.
unfreeze
([model_type])Restore parameters frozen status to default depending on model type.
Attributes Documentation
- default_parameters = <gammapy.modeling.parameter.Parameters object>#
- evaluation_bin_size_min#
Minimal spatial bin size for spatial model evaluation.
- frame#
- name#
- parameters#
- parameters_unique_names#
List of unique parameter names. Return formatted as par_type.par_name.
- position_lonlat#
Spatial model center position
(lon, lat)
in radians and frame of the model.
- spatial_model#
Spatial model as a
SpatialModel
object.
- spectral_model#
Spectral model as a
SpectralModel
object.
- tag = ['SkyModel', 'sky-model']#
- temporal_model#
Temporal model as a
TemporalModel
object.
Methods Documentation
- contributes(mask, margin='0 deg')[source]#
Check if a sky model contributes within a mask map.
- Parameters:
- Returns:
- models
DatasetModels
Selected models contributing inside the region where mask is True.
- models
- classmethod create(spectral_model, spatial_model=None, temporal_model=None, **kwargs)[source]#
Create a model instance.
- Parameters:
- spectral_modelstr
Tag to create spectral model.
- spatial_modelstr, optional
Tag to create spatial model. Default is None.
- temporal_modelstr, optional
Tag to create temporal model. Default is None.
- **kwargsdict
Keyword arguments passed to
SkyModel
.
- Returns:
- modelSkyModel
Sky model.
- evaluate(lon, lat, energy, time=None)[source]#
Evaluate the model at given points.
The model evaluation follows numpy broadcasting rules.
Return differential surface brightness cube. At the moment in units:
cm-2 s-1 TeV-1 deg-2
.
- freeze(model_type=None)[source]#
Freeze parameters depending on model type.
- Parameters:
- model_type{None, “spatial”, “spectral”, “temporal”}
Freeze all parameters or only spatial/spectral/temporal. Default is None, such that all parameters are frozen.
- integrate_geom(geom, gti=None, oversampling_factor=None)[source]#
Integrate model on
Geom
.See
integrate_geom
andintegral
.- Parameters:
- geom
Geom
orRegionGeom
Map geometry.
- gti
GTI
, optional GIT table. Default is None.
- oversampling_factorint, optional
The oversampling factor to use for spatial integration. Default is None: the factor is estimated from the model minimal bin size.
- geom
- Returns:
- flux
Map
Predicted flux map.
- flux
- unfreeze(model_type=None)[source]#
Restore parameters frozen status to default depending on model type.
- Parameters:
- model_type{None, “spatial”, “spectral”, “temporal”}
Restore frozen status to default for all parameters or only spatial/spectral/temporal. Default is None, such that all parameters are restored to default frozen status.
- __init__(spectral_model, spatial_model=None, temporal_model=None, name=None, apply_irf=None, datasets_names=None, covariance_data=None)[source]#
- classmethod __new__(*args, **kwargs)#