FluxPointsDataset#

class gammapy.datasets.FluxPointsDataset(models=None, data=None, mask_fit=None, mask_safe=None, name=None, meta_table=None, stat_type='chi2', stat_kwargs=None)[source]#

Bases: Dataset

Bundle a set of flux points with a parametric model, to compute fit statistic function using chi2 statistics.

For more information see Datasets (DL4).

Parameters:
modelsModels

Models (only spectral part needs to be set).

dataFluxPoints

Flux points. Must be sorted along the energy axis.

mask_fitnumpy.ndarray

Mask to apply for fitting.

mask_safenumpy.ndarray

Mask defining the safe data range. By default, upper limit values are excluded.

meta_tableTable

Table listing information on observations used to create the dataset. One line per observation for stacked datasets.

stat_typestr

Method used to compute the statistics: * chi2 : estimate from chi2 statistics. * profile : estimate from interpolation of the likelihood profile. * distrib : Assuming gaussian errors the likelihood is given by the

probability density function of the normal distribution. For the upper limit case it is necessary to marginalize over the unknown measurement, So we integrate the normal distribution up to the upper limit value which gives the complementary error function. See eq. C7 of Mohanty et al (2013) : https://iopscience.iop.org/article/10.1088/0004-637X/773/2/168/pdf

Default is chi2, in that case upper limits are ignored and the mean of asymetrics error is used. However it is recommended to use profile if stat_scan is available on flux points. The distrib case provides an approximation if the profile is not available.

stat_kwargsdict

Extra arguments specifying the interpolation scheme of the likelihood profile. Used only if stat_type=="profile". In that case the default is : `stat_kwargs={“interp_scale”:”sqrt”, “extrapolate”:True}

Examples

Load flux points from file and fit with a power-law model:

>>> from gammapy.modeling import Fit
>>> from gammapy.modeling.models import PowerLawSpectralModel, SkyModel
>>> from gammapy.estimators import FluxPoints
>>> from gammapy.datasets import FluxPointsDataset
>>> filename = "$GAMMAPY_DATA/tests/spectrum/flux_points/diff_flux_points.fits"
>>> dataset = FluxPointsDataset.read(filename)
>>> model = SkyModel(spectral_model=PowerLawSpectralModel())
>>> dataset.models = model

Make the fit:

>>> fit = Fit()
>>> result = fit.run([dataset])
>>> print(result)
OptimizeResult

    backend    : minuit
    method     : migrad
    success    : True
    message    : Optimization terminated successfully.
    nfev       : 135
    total stat : 25.21

CovarianceResult

    backend    : minuit
    method     : hesse
    success    : True
    message    : Hesse terminated successfully.
>>> print(result.parameters.to_table())
type    name     value         unit      ... frozen is_norm link prior
---- --------- ---------- -------------- ... ------ ------- ---- -----
         index 2.2159e+00                ...  False   False
     amplitude 2.1619e-13 TeV-1 s-1 cm-2 ...  False    True
     reference 1.0000e+00            TeV ...   True   False

Note: In order to reproduce the example, you need the tests datasets folder. You may download it with the command: gammapy download datasets --tests --out $GAMMAPY_DATA

Attributes Summary

available_stat_type

gti

Good time interval info (GTI).

mask

Combined fit and safe mask.

mask_safe

mask_valid

models

name

stat_type

tag

Methods Summary

copy([name])

A deep copy.

data_shape()

Shape of the flux points data (tuple).

flux_pred()

Compute predicted flux.

from_dict(data, **kwargs)

Create flux point dataset from dict.

plot_fit([ax_spectrum, ax_residuals, ...])

Plot flux points, best fit model and residuals in two panels.

plot_residuals([ax, method])

Plot flux point residuals.

plot_spectrum([ax, kwargs_fp, kwargs_model, ...])

Plot flux points and model.

read(filename[, name])

Read pre-computed flux points and create a dataset.

residuals([method])

Compute flux point residuals.

stat_array()

Fit statistic array.

stat_sum()

Total statistic given the current model parameters and priors.

to_dict()

Convert to dict for YAML serialization.

write(filename[, overwrite, checksum])

Write flux point dataset to file.

Attributes Documentation

available_stat_type#
gti#

Good time interval info (GTI).

mask#

Combined fit and safe mask.

mask_safe#
mask_valid#
models#
name#
stat_type#
tag = 'FluxPointsDataset'#

Methods Documentation

copy(name=None)#

A deep copy.

Parameters:
namestr, optional

Name of the copied dataset. Default is None.

Returns:
datasetDataset

Copied datasets.

data_shape()[source]#

Shape of the flux points data (tuple).

flux_pred()[source]#

Compute predicted flux.

classmethod from_dict(data, **kwargs)[source]#

Create flux point dataset from dict.

Parameters:
datadict

Dictionary containing data to create dataset from.

Returns
——-
datasetFluxPointsDataset

Flux point datasets.

plot_fit(ax_spectrum=None, ax_residuals=None, kwargs_spectrum=None, kwargs_residuals=None, axis_name='energy')[source]#

Plot flux points, best fit model and residuals in two panels.

Calls plot_spectrum and plot_residuals.

Parameters:
ax_spectrumAxes, optional

Axes to plot flux points and best fit model on. Default is None.

ax_residualsAxes, optional

Axes to plot residuals on. Default is None.

kwargs_spectrumdict, optional

Keyword arguments passed to plot_spectrum. Default is None.

kwargs_residualsdict, optional

Keyword arguments passed to plot_residuals. Default is None.

Returns
——-
ax_spectrum, ax_residualsAxes

Flux points, best fit model and residuals plots.

Examples

>>> from gammapy.modeling.models import PowerLawSpectralModel, SkyModel
>>> from gammapy.estimators import FluxPoints
>>> from gammapy.datasets import FluxPointsDataset
>>> #load precomputed flux points
>>> filename = "$GAMMAPY_DATA/tests/spectrum/flux_points/diff_flux_points.fits"
>>> flux_points = FluxPoints.read(filename)
>>> model = SkyModel(spectral_model=PowerLawSpectralModel())
>>> dataset = FluxPointsDataset(model, flux_points)
>>> #configuring optional parameters
>>> kwargs_spectrum = {"kwargs_model": {"color":"red", "ls":"--"}, "kwargs_fp":{"color":"green", "marker":"o"}}
>>> kwargs_residuals = {"color": "blue", "markersize":4, "marker":'s', }
>>> dataset.plot_fit(kwargs_residuals=kwargs_residuals, kwargs_spectrum=kwargs_spectrum) 
plot_residuals(ax=None, method='diff', **kwargs)[source]#

Plot flux point residuals.

Parameters:
axAxes, optional

Axes to plot on. Default is None.

method{“diff”, “diff/model”}

Normalization used to compute the residuals, see FluxPointsDataset.residuals. Default is “diff”.

**kwargsdict

Keyword arguments passed to errorbar.

Returns:
axAxes

Axes object.

plot_spectrum(ax=None, kwargs_fp=None, kwargs_model=None, axis_name='energy')[source]#

Plot flux points and model.

Parameters:
axAxes, optional

Axes to plot on. Default is None.

kwargs_fpdict, optional

Keyword arguments passed to gammapy.estimators.FluxPoints.plot to configure the plot style. Default is None.

kwargs_modeldict, optional

Keyword arguments passed to gammapy.modeling.models.SpectralModel.plot and gammapy.modeling.models.SpectralModel.plot_error to configure the plot style. Default is None.

axis_namestr

Axis along which to plot the flux points for multiple axes. Default is energy.

Returns:
axAxes

Axes object.

Examples

>>> from gammapy.modeling.models import PowerLawSpectralModel, SkyModel
>>> from gammapy.estimators import FluxPoints
>>> from gammapy.datasets import FluxPointsDataset
>>> #load precomputed flux points
>>> filename = "$GAMMAPY_DATA/tests/spectrum/flux_points/diff_flux_points.fits"
>>> flux_points = FluxPoints.read(filename)
>>> model = SkyModel(spectral_model=PowerLawSpectralModel())
>>> dataset = FluxPointsDataset(model, flux_points)
>>> #configuring optional parameters
>>> kwargs_model = {"color":"red", "ls":"--"}
>>> kwargs_fp = {"color":"green", "marker":"o"}
>>> dataset.plot_spectrum(kwargs_fp=kwargs_fp, kwargs_model=kwargs_model) 
classmethod read(filename, name=None)[source]#

Read pre-computed flux points and create a dataset.

Parameters:
filenamestr

Filename to read from.

namestr, optional

Name of the new dataset. Default is None.

Returns
——-
datasetFluxPointsDataset

FluxPointsDataset.

residuals(method='diff')[source]#

Compute flux point residuals.

Parameters:
method: {“diff”, “diff/model”}

Method used to compute the residuals. Available options are:

  • "diff" (default): data - model.

  • "diff/model": (data - model) / model.

Returns:
residualsndarray

Residuals array.

stat_array()[source]#

Fit statistic array.

stat_sum()#

Total statistic given the current model parameters and priors.

to_dict()#

Convert to dict for YAML serialization.

write(filename, overwrite=False, checksum=False, **kwargs)[source]#

Write flux point dataset to file.

Parameters:
filenamestr

Filename to write to.

overwritebool, optional

Overwrite existing file. Default is False.

checksumbool

When True adds both DATASUM and CHECKSUM cards to the headers written to the FITS file. Applies only if filename has .fits suffix. Default is False.

**kwargsdict, optional

Keyword arguments passed to write.