FluxPointsDataset#
- class gammapy.datasets.FluxPointsDataset(models=None, data=None, mask_fit=None, mask_safe=None, name=None, meta_table=None, stat_type='chi2', stat_kwargs=None)[source]#
Bases:
Dataset
Bundle a set of flux points with a parametric model, to compute fit statistic function using chi2 statistics.
For more information see Datasets (DL4).
- Parameters:
- models
Models
Models (only spectral part needs to be set).
- data
FluxPoints
Flux points. Must be sorted along the energy axis.
- mask_fit
numpy.ndarray
Mask to apply for fitting.
- mask_safe
numpy.ndarray
Mask defining the safe data range. By default, upper limit values are excluded.
- meta_table
Table
Table listing information on observations used to create the dataset. One line per observation for stacked datasets.
- stat_typestr
Method used to compute the statistics: * chi2 : estimate from chi2 statistics. * profile : estimate from interpolation of the likelihood profile. * distrib : Assuming gaussian errors the likelihood is given by the
probability density function of the normal distribution. For the upper limit case it is necessary to marginalize over the unknown measurement, So we integrate the normal distribution up to the upper limit value which gives the complementary error function. See eq. C7 of Mohanty et al (2013) : https://iopscience.iop.org/article/10.1088/0004-637X/773/2/168/pdf
Default is
chi2
, in that case upper limits are ignored and the mean of asymetrics error is used. However it is recommended to useprofile
ifstat_scan
is available on flux points. Thedistrib
case provides an approximation if the profile is not available.- stat_kwargsdict
Extra arguments specifying the interpolation scheme of the likelihood profile. Used only if
stat_type=="profile"
. In that case the default is : `stat_kwargs={“interp_scale”:”sqrt”, “extrapolate”:True}
- models
Examples
Load flux points from file and fit with a power-law model:
>>> from gammapy.modeling import Fit >>> from gammapy.modeling.models import PowerLawSpectralModel, SkyModel >>> from gammapy.estimators import FluxPoints >>> from gammapy.datasets import FluxPointsDataset >>> filename = "$GAMMAPY_DATA/tests/spectrum/flux_points/diff_flux_points.fits" >>> dataset = FluxPointsDataset.read(filename) >>> model = SkyModel(spectral_model=PowerLawSpectralModel()) >>> dataset.models = model
Make the fit:
>>> fit = Fit() >>> result = fit.run([dataset]) >>> print(result) OptimizeResult backend : minuit method : migrad success : True message : Optimization terminated successfully. nfev : 135 total stat : 25.21 CovarianceResult backend : minuit method : hesse success : True message : Hesse terminated successfully.
>>> print(result.parameters.to_table()) type name value unit ... frozen is_norm link prior ---- --------- ---------- -------------- ... ------ ------- ---- ----- index 2.2159e+00 ... False False amplitude 2.1619e-13 TeV-1 s-1 cm-2 ... False True reference 1.0000e+00 TeV ... True False
Note: In order to reproduce the example, you need the tests datasets folder. You may download it with the command:
gammapy download datasets --tests --out $GAMMAPY_DATA
Attributes Summary
Good time interval info (
GTI
).Combined fit and safe mask.
Methods Summary
copy
([name])A deep copy.
Shape of the flux points data (tuple).
Compute predicted flux.
from_dict
(data, **kwargs)Create flux point dataset from dict.
plot_fit
([ax_spectrum, ax_residuals, ...])Plot flux points, best fit model and residuals in two panels.
plot_residuals
([ax, method])Plot flux point residuals.
plot_spectrum
([ax, kwargs_fp, kwargs_model, ...])Plot flux points and model.
read
(filename[, name])Read pre-computed flux points and create a dataset.
residuals
([method])Compute flux point residuals.
Fit statistic array.
stat_sum
()Total statistic given the current model parameters and priors.
to_dict
()Convert to dict for YAML serialization.
write
(filename[, overwrite, checksum])Write flux point dataset to file.
Attributes Documentation
- available_stat_type#
- gti#
Good time interval info (
GTI
).
- mask#
Combined fit and safe mask.
- mask_safe#
- mask_valid#
- models#
- name#
- stat_type#
- tag = 'FluxPointsDataset'#
Methods Documentation
- copy(name=None)#
A deep copy.
- Parameters:
- namestr, optional
Name of the copied dataset. Default is None.
- Returns:
- dataset
Dataset
Copied datasets.
- dataset
- classmethod from_dict(data, **kwargs)[source]#
Create flux point dataset from dict.
- Parameters:
- datadict
Dictionary containing data to create dataset from.
- Returns
- ——-
- dataset
FluxPointsDataset
Flux point datasets.
- plot_fit(ax_spectrum=None, ax_residuals=None, kwargs_spectrum=None, kwargs_residuals=None, axis_name='energy')[source]#
Plot flux points, best fit model and residuals in two panels.
Calls
plot_spectrum
andplot_residuals
.- Parameters:
- ax_spectrum
Axes
, optional Axes to plot flux points and best fit model on. Default is None.
- ax_residuals
Axes
, optional Axes to plot residuals on. Default is None.
- kwargs_spectrumdict, optional
Keyword arguments passed to
plot_spectrum
. Default is None.- kwargs_residualsdict, optional
Keyword arguments passed to
plot_residuals
. Default is None.- Returns
- ——-
- ax_spectrum, ax_residuals
Axes
Flux points, best fit model and residuals plots.
- ax_spectrum
Examples
>>> from gammapy.modeling.models import PowerLawSpectralModel, SkyModel >>> from gammapy.estimators import FluxPoints >>> from gammapy.datasets import FluxPointsDataset
>>> #load precomputed flux points >>> filename = "$GAMMAPY_DATA/tests/spectrum/flux_points/diff_flux_points.fits" >>> flux_points = FluxPoints.read(filename) >>> model = SkyModel(spectral_model=PowerLawSpectralModel()) >>> dataset = FluxPointsDataset(model, flux_points) >>> #configuring optional parameters >>> kwargs_spectrum = {"kwargs_model": {"color":"red", "ls":"--"}, "kwargs_fp":{"color":"green", "marker":"o"}} >>> kwargs_residuals = {"color": "blue", "markersize":4, "marker":'s', } >>> dataset.plot_fit(kwargs_residuals=kwargs_residuals, kwargs_spectrum=kwargs_spectrum)
- plot_residuals(ax=None, method='diff', **kwargs)[source]#
Plot flux point residuals.
- Parameters:
- ax
Axes
, optional Axes to plot on. Default is None.
- method{“diff”, “diff/model”}
Normalization used to compute the residuals, see
FluxPointsDataset.residuals
. Default is “diff”.- **kwargsdict
Keyword arguments passed to
errorbar
.
- ax
- Returns:
- ax
Axes
Axes object.
- ax
- plot_spectrum(ax=None, kwargs_fp=None, kwargs_model=None, axis_name='energy')[source]#
Plot flux points and model.
- Parameters:
- ax
Axes
, optional Axes to plot on. Default is None.
- kwargs_fpdict, optional
Keyword arguments passed to
gammapy.estimators.FluxPoints.plot
to configure the plot style. Default is None.- kwargs_modeldict, optional
Keyword arguments passed to
gammapy.modeling.models.SpectralModel.plot
andgammapy.modeling.models.SpectralModel.plot_error
to configure the plot style. Default is None.- axis_namestr
Axis along which to plot the flux points for multiple axes. Default is energy.
- ax
- Returns:
- ax
Axes
Axes object.
- ax
Examples
>>> from gammapy.modeling.models import PowerLawSpectralModel, SkyModel >>> from gammapy.estimators import FluxPoints >>> from gammapy.datasets import FluxPointsDataset
>>> #load precomputed flux points >>> filename = "$GAMMAPY_DATA/tests/spectrum/flux_points/diff_flux_points.fits" >>> flux_points = FluxPoints.read(filename) >>> model = SkyModel(spectral_model=PowerLawSpectralModel()) >>> dataset = FluxPointsDataset(model, flux_points) >>> #configuring optional parameters >>> kwargs_model = {"color":"red", "ls":"--"} >>> kwargs_fp = {"color":"green", "marker":"o"} >>> dataset.plot_spectrum(kwargs_fp=kwargs_fp, kwargs_model=kwargs_model)
- classmethod read(filename, name=None)[source]#
Read pre-computed flux points and create a dataset.
- Parameters:
- filenamestr
Filename to read from.
- namestr, optional
Name of the new dataset. Default is None.
- Returns
- ——-
- dataset
FluxPointsDataset
FluxPointsDataset.
- residuals(method='diff')[source]#
Compute flux point residuals.
- Parameters:
- method: {“diff”, “diff/model”}
Method used to compute the residuals. Available options are:
"diff"
(default): data - model."diff/model"
: (data - model) / model.
- Returns:
- residuals
ndarray
Residuals array.
- residuals
- stat_sum()#
Total statistic given the current model parameters and priors.
- to_dict()#
Convert to dict for YAML serialization.
- write(filename, overwrite=False, checksum=False, **kwargs)[source]#
Write flux point dataset to file.
- Parameters:
- filenamestr
Filename to write to.
- overwritebool, optional
Overwrite existing file. Default is False.
- checksumbool
When True adds both DATASUM and CHECKSUM cards to the headers written to the FITS file. Applies only if filename has .fits suffix. Default is False.
- **kwargsdict, optional
Keyword arguments passed to
write
.