MooreProfile#
- class gammapy.astro.darkmatter.MooreProfile(r_s=None, rho_s=<Quantity 1. GeV / cm3>)[source]#
Bases:
DMProfile
Moore Profile.
\[\rho(r) = \rho_s \left(\frac{r_s}{r}\right)^{1.16} \left(1 + \frac{r}{r_s} \right)^{-1.84}\]- Parameters:
- r_s
Quantity
Scale radius, \(r_s\).
- r_s
References
Attributes Summary
Default scale radius as given in reference 2
Distance to the Galactic Center as given in reference 2
Local dark matter density as given in reference 2
Methods Summary
__call__
(radius)Call evaluate method of derived classes.
evaluate
(radius, r_s, rho_s)Evaluate the profile.
integral
(rmin, rmax, separation, ndecade[, ...])Integrate dark matter profile numerically.
integrate_spectrum_separation
(func, xmin, ...)Squared dark matter profile integral.
Scale to local density.
Attributes Documentation
- DEFAULT_SCALE_RADIUS = <Quantity 30.28 kpc>#
Default scale radius as given in reference 2
- DISTANCE_GC = <Quantity 8.5 kpc>#
Distance to the Galactic Center as given in reference 2
- LOCAL_DENSITY = <Quantity 0.39 GeV / cm3>#
Local dark matter density as given in reference 2
Methods Documentation
- __call__(radius)#
Call evaluate method of derived classes.
- integral(rmin, rmax, separation, ndecade, squared=True)#
Integrate dark matter profile numerically.
\[\begin{split}F(r_{min}, r_{max}) = \int_{r_{min}}^{r_{max}}\rho(r)^\gamma dr \\ \gamma = 2 \text{for annihilation} \\ \gamma = 1 \text{for decay}\end{split}\]
- integrate_spectrum_separation(func, xmin, xmax, separation, ndecade, squared=True)#
Squared dark matter profile integral.
- scale_to_local_density()#
Scale to local density.