estimators - High level estimators#

gammapy.estimators Package#

Estimators.

Classes#

ASmoothMapEstimator

Adaptively smooth counts image.

Estimator

Abstract estimator base class.

ExcessMapEstimator

Computes correlated excess, significance, flux and error maps, and optionally upper limits or sensitivity from a map dataset.

FluxMaps

A flux map / points container.

FluxPoints

Flux points container.

FluxPointsEstimator

Flux points estimator.

FluxProfileEstimator

Estimate flux profiles.

ImageProfile

Image profile class.

ImageProfileEstimator

Estimate profile from image.

LightCurveEstimator

Estimate light curve.

ParameterEstimator

Model parameter estimator.

SensitivityEstimator

Estimate sensitivity.

ParameterSensitivityEstimator

Estimate the sensitivity to a given parameter.

TSMapEstimator

Compute test statistic map from a MapDataset using different optimization methods.

EnergyDependentMorphologyEstimator

Test if there is any energy-dependent morphology in a map dataset for a given set of energy bins.

FluxMetaData

Metadata containing information about the FluxPoints and FluxMaps.

Variables#

ESTIMATOR_REGISTRY

Registry of estimator classes in Gammapy.

gammapy.estimators.utils Module#

Functions#

combine_flux_maps(maps[, method, ...])

Create a FluxMaps by combining a list of flux maps with the same geometry.

combine_significance_maps(maps)

Compute excess and significance for a set of datasets.

estimate_exposure_reco_energy(dataset[, ...])

Estimate an exposure map in reconstructed energy.

find_peaks(image, threshold[, min_distance])

Find local peaks in an image.

find_peaks_in_flux_map(maps, threshold[, ...])

Find local test statistic peaks for a given Map.

resample_energy_edges(dataset[, conditions])

Return energy edges that satisfy given condition on the per bin statistics.

get_rebinned_axis(fluxpoint[, axis_name, method])

Get the rebinned axis for resampling the flux point object along the mentioned axis.

get_combined_flux_maps(estimator, datasets)

Create a FluxMaps by combining a list of flux maps with the same geometry.

get_combined_significance_maps(estimator, ...)

Compute excess and significance for a set of datasets.

compute_lightcurve_fvar(lightcurve[, ...])

Compute the fractional excess variance of the input lightcurve.

compute_lightcurve_fpp(lightcurve[, ...])

Compute the point-to-point excess variance of the input lightcurve.

compute_lightcurve_doublingtime(lightcurve)

Compute the minimum characteristic flux doubling and halving time for the input lightcurve.

compute_lightcurve_discrete_correlation(...)

Compute the discrete correlation function for two lightcurves, or the discrete autocorrelation if only one lightcurve is provided.