UniformPrior#
- class gammapy.modeling.models.UniformPrior[source]#
Bases:
Prior
Uniform Prior.
Returns 2log(max-min) if the parameter value is in [min, max]. Returns inf, otherwise. Only well defined for finite values of min and max.
- Parameters:
- minfloat, optional
Minimum value. Default is 0.
- maxfloat, optional
Maximum value. Default is 1.
Attributes Summary
Methods Summary
evaluate
(value, min, max)Evaluate the uniform prior.
Attributes Documentation
- default_parameters = <gammapy.modeling.parameter.PriorParameters object>#
- max#
Parameter of a
Prior
.A prior is a probability density function of a model parameter and can take different forms, including but not limited to Gaussian distributions and uniform distributions. The prior includes information or knowledge about the dataset or the parameters of the fit.
Examples
For a usage example see Priors tutorial.
- min#
Parameter of a
Prior
.A prior is a probability density function of a model parameter and can take different forms, including but not limited to Gaussian distributions and uniform distributions. The prior includes information or knowledge about the dataset or the parameters of the fit.
Examples
For a usage example see Priors tutorial.
- tag = ['UniformPrior']#
Methods Documentation
- __init__(**kwargs)#
- classmethod __new__(*args, **kwargs)#