EventList#
- class gammapy.data.EventList(table, meta=None)[source]#
Bases:
object
Event list.
Event list data is stored as
table
(Table
) data member.The most important reconstructed event parameters are available as the following columns:
TIME
- Mission elapsed time (sec)RA
,DEC
- ICRS system position (deg)ENERGY
- Energy (usually MeV for Fermi and TeV for IACTs)
Note that
TIME
is usually sorted, but sometimes it is not. E.g. when simulating data, or processing it in certain ways. So generally any analysis code should assumeTIME
is not sorted.Other optional (columns) that are sometimes useful for high level analysis:
GLON
,GLAT
- Galactic coordinates (deg)DETX
,DETY
- Field of view coordinates (deg)
Note that when reading data for analysis you shouldn’t use those values directly, but access them via properties which create objects of the appropriate class:
- Parameters:
- table
Table
Event list table.
- meta
EventListMetaData
The metadata. Default is None.
- table
Examples
>>> from gammapy.data import EventList >>> events = EventList.read("$GAMMAPY_DATA/cta-1dc/data/baseline/gps/gps_baseline_110380.fits") >>> print(events) EventList --------- Instrument : None Telescope : CTA Obs. ID : 110380 Number of events : 106217 Event rate : 59.273 1 / s Time start : 59235.5 Time stop : 59235.52074074074 Min. energy : 3.00e-02 TeV Max. energy : 1.46e+02 TeV Median energy : 1.02e-01 TeV Max. offset : 5.0 deg
Attributes Summary
ALT / AZ position computed from RA / DEC as a
SkyCoord
object.ALT / AZ frame as an
AltAz
object.ALT / AZ position from table as a
SkyCoord
object.Event energies as a
Quantity
.Event Galactic sky coordinates as a
SkyCoord
object.Median position as a
SkyCoord
object.Whether observation is pointed.
Dead-time fraction as a float.
Live-time duration in seconds as a
Quantity
.Observation time duration in seconds as a
Quantity
.Observation start time as a
Time
object.Observation stop time as a
Time
object.Observatory location as an
EarthLocation
object.Event offset from the array pointing position as an
Angle
.Event offset from the median position as an
Angle
.Pointing RA / DEC sky coordinates as a
SkyCoord
object.Event RA / DEC sky coordinates as a
SkyCoord
object.Event times as a
Time
object.Time reference as a
Time
object.Methods Summary
check
([checks])Run checks.
copy
()Copy event list (
EventList
).from_stack
(event_lists, **kwargs)Stack (concatenate) list of event lists.
map_coord
(geom)Event map coordinates for a given geometry.
peek
([allsky])Quick look plots.
plot_energy
([ax])Plot counts as a function of energy.
plot_energy_offset
([ax, center])Plot counts histogram with energy and offset axes.
plot_image
([ax, allsky])Quick look counts map sky plot.
plot_offset2_distribution
([ax, center, ...])Plot offset^2 distribution of the events.
plot_time
([ax])Plot an event rate time curve.
read
(filename[, hdu, checksum])Read from FITS file.
select_energy
(energy_range)Select events in energy band.
select_mask
(mask)Select events inside a mask (
EventList
).select_offset
(offset_band)Select events in offset band.
select_parameter
(parameter, band)Select events with respect to a specified parameter.
select_rad_max
(rad_max[, position])Select energy dependent offset.
select_region
(regions[, wcs])Select events in given region.
select_row_subset
(row_specifier)Select table row subset.
select_time
(time_interval)Select events in time interval.
stack
(other)Stack with another EventList in place.
to_table_hdu
([format])Convert event list to a
BinTableHDU
.Attributes Documentation
- galactic#
Event Galactic sky coordinates as a
SkyCoord
object.Always computed from RA / DEC using Astropy.
- is_pointed_observation#
Whether observation is pointed.
- observation_dead_time_fraction#
Dead-time fraction as a float.
This is a keyword related to IACTs. Defined as dead-time over observation time.
Dead-time is defined as the time during the observation where the detector didn’t record events: http://en.wikipedia.org/wiki/Dead_time https://ui.adsabs.harvard.edu/abs/2004APh….22..285F
The dead-time fraction is used in the live-time computation, which in turn is used in the exposure and flux computation.
- observation_live_time_duration#
Live-time duration in seconds as a
Quantity
.The dead-time-corrected observation time.
In Fermi-LAT it is automatically provided in the header of the event list.
In IACTs is computed as
t_live = t_observation * (1 - f_dead)
wheref_dead
is the dead-time fraction.
- observation_time_duration#
Observation time duration in seconds as a
Quantity
.This is a keyword related to IACTs. The wall time, including dead-time.
- observatory_earth_location#
Observatory location as an
EarthLocation
object.
- time#
Event times as a
Time
object.Notes
Times are automatically converted to 64-bit floats. With 32-bit floats times will be incorrect by a few seconds when e.g. adding them to the reference time.
Methods Documentation
- classmethod from_stack(event_lists, **kwargs)[source]#
Stack (concatenate) list of event lists.
Calls
vstack
.
- peek(allsky=False)[source]#
Quick look plots.
- Parameters:
- allskybool, optional
Whether to look at the events all-sky. Default is False.
- plot_energy_offset(ax=None, center=None, **kwargs)[source]#
Plot counts histogram with energy and offset axes.
- Parameters:
- ax
Axis
, optional Plot axis. Default is None.
- center
SkyCoord
, optional Sky coord from which offset is computed. Default is None.
- **kwargsdict, optional
Keyword arguments forwarded to
pcolormesh
.
- ax
- Returns:
- ax
Axis
Plot axis.
- ax
- plot_image(ax=None, allsky=False)[source]#
Quick look counts map sky plot.
- Parameters:
- ax
Axes
, optional Matplotlib axes.
- allskybool, optional
Whether to plot on an all sky geom. Default is False.
- ax
- plot_offset2_distribution(ax=None, center=None, max_percentile=98, **kwargs)[source]#
Plot offset^2 distribution of the events.
The distribution shown in this plot is for this quantity:
offset = center.separation(events.radec).deg offset2 = offset ** 2
Note that this method is just for a quicklook plot.
If you want to do computations with the offset or offset^2 values, you can use the line above. As an example, here’s how to compute the 68% event containment radius using
numpy.percentile
:import numpy as np r68 = np.percentile(offset, q=68)
- Parameters:
- ax
Axes
, optional Matplotlib axes. Default is None.
- center
astropy.coordinates.SkyCoord
, optional Center position for the offset^2 distribution. Default is the observation pointing position.
- max_percentilefloat, optional
Define the percentile of the offset^2 distribution used to define the maximum offset^2 value. Default is 98.
- **kwargsdict, optional
Extra keyword arguments are passed to
hist
.
- ax
- Returns:
- ax
Axes
Matplotlib axes.
- ax
Examples
Load an example event list:
>>> from gammapy.data import EventList >>> from astropy import units as u >>> filename = "$GAMMAPY_DATA/hess-dl3-dr1/data/hess_dl3_dr1_obs_id_023523.fits.gz" >>> events = EventList.read(filename)
>>> #Plot the offset^2 distribution wrt. the observation pointing position >>> #(this is a commonly used plot to check the background spatial distribution): >>> events.plot_offset2_distribution() Plot the offset^2 distribution wrt. the Crab pulsar position (this is commonly used to check both the gamma-ray signal and the background spatial distribution):
>>> import numpy as np >>> from astropy.coordinates import SkyCoord >>> center = SkyCoord(83.63307, 22.01449, unit='deg') >>> bins = np.linspace(start=0, stop=0.3 ** 2, num=30) * u.deg ** 2 >>> events.plot_offset2_distribution(center=center, bins=bins)
Note how we passed the
bins
option ofmatplotlib.pyplot.hist
to control the histogram binning, in this case 30 bins ranging from 0 to (0.3 deg)^2.
- classmethod read(filename, hdu='EVENTS', checksum=False, **kwargs)[source]#
Read from FITS file.
Format specification: EVENTS
- Parameters:
- filename
pathlib.Path
, str Filename
- hdustr
Name of events HDU. Default is “EVENTS”.
- checksumbool
If True checks both DATASUM and CHECKSUM cards in the file headers. Default is False.
- filename
- select_energy(energy_range)[source]#
Select events in energy band.
- Parameters:
- energy_range
Quantity
Energy range
[energy_min, energy_max)
.
- energy_range
- Returns:
- event_list
EventList
Copy of event list with selection applied.
- event_list
Examples
>>> from astropy import units as u >>> from gammapy.data import EventList >>> filename = "$GAMMAPY_DATA/fermi_3fhl/fermi_3fhl_events_selected.fits.gz" >>> event_list = EventList.read(filename) >>> energy_range =[1, 20] * u.TeV >>> event_list = event_list.select_energy(energy_range=energy_range)
- select_mask(mask)[source]#
Select events inside a mask (
EventList
).Examples
>>> from gammapy.data import EventList >>> from gammapy.maps import WcsGeom, Map >>> geom = WcsGeom.create(skydir=(0,0), width=(4, 4), frame="galactic") >>> mask = geom.region_mask("galactic;circle(0, 0, 0.5)") >>> filename = "$GAMMAPY_DATA/cta-1dc/data/baseline/gps/gps_baseline_110380.fits" >>> events = EventList.read(filename) >>> masked_event = events.select_mask(mask) >>> len(masked_event.table) 5594
- select_offset(offset_band)[source]#
Select events in offset band.
- Parameters:
- offset_band
Angle
offset band
[offset_min, offset_max)
.
- offset_band
- Returns:
- event_list
EventList
Copy of event list with selection applied.
- event_list
Examples
>>> from gammapy.data import EventList >>> import astropy.units as u >>> filename = "$GAMMAPY_DATA/cta-1dc/data/baseline/gps/gps_baseline_110380.fits" >>> events = EventList.read(filename) >>> selected_events = events.select_offset([0.3, 0.9]*u.deg) >>> len(selected_events.table) 12688
- select_parameter(parameter, band)[source]#
Select events with respect to a specified parameter.
- Parameters:
- parameterstr
Parameter used for the selection. Must be present in
self.table
.- bandtuple or
astropy.units.Quantity
Minimum and maximum value for the parameter to be selected (minimum <= parameter < maximum). If parameter is not dimensionless, a Quantity is required.
- Returns:
- event_list
EventList
Copy of event list with selection applied.
- event_list
Examples
>>> from astropy import units as u >>> from gammapy.data import EventList >>> filename = "$GAMMAPY_DATA/fermi_3fhl/fermi_3fhl_events_selected.fits.gz" >>> event_list = EventList.read(filename) >>> zd = (0, 30) * u.deg >>> event_list = event_list.select_parameter(parameter='ZENITH_ANGLE', band=zd) >>> print(len(event_list.table)) 123944
- select_region(regions, wcs=None)[source]#
Select events in given region.
- Parameters:
- regionsstr or
Region
or list ofRegion
Region or list of regions (pixel or sky regions accepted). A region can be defined as a string in the DS9 format as well. See http://ds9.si.edu/doc/ref/region.html for details.
- wcs
WCS
, optional World coordinate system transformation. Default is None.
- regionsstr or
- Returns:
- event_list
EventList
Copy of event list with selection applied.
- event_list
- select_row_subset(row_specifier)[source]#
Select table row subset.
- Parameters:
- row_specifierslice or int or array of int
Specification for rows to select, passed to
self.table[row_specifier]
.
- Returns:
- event_list
EventList
New event list with table row subset selected.
- event_list
Examples
>>> from gammapy.data import EventList >>> import numpy as np >>> filename = "$GAMMAPY_DATA/cta-1dc/data/baseline/gps/gps_baseline_110380.fits" >>> events = EventList.read(filename) >>> #Use a boolean mask as ``row_specifier``: >>> mask = events.table['MC_ID'] == 1 >>> events2 = events.select_row_subset(mask) >>> print(len(events2.table)) 97978 >>> #Use row index array as ``row_specifier``: >>> idx = np.where(events.table['MC_ID'] == 1)[0] >>> events2 = events.select_row_subset(idx) >>> print(len(events2.table)) 97978
- select_time(time_interval)[source]#
Select events in time interval.
- Parameters:
- time_interval
astropy.time.Time
Start time (inclusive) and stop time (exclusive) for the selection.
- time_interval
- Returns:
- events
EventList
Copy of event list with selection applied.
- events
- stack(other)[source]#
Stack with another EventList in place.
Calls
vstack
.- Parameters:
- other
EventList
Event list to stack to self.
- other
- to_table_hdu(format='gadf')[source]#
Convert event list to a
BinTableHDU
.- Parameters:
- formatstr, optional
Output format, currently only “gadf” is supported. Default is “gadf”.
- Returns:
- hdu
astropy.io.fits.BinTableHDU
EventList converted to FITS representation.
- hdu