OptimizeResult#

class gammapy.modeling.OptimizeResult(models, nfev, total_stat, trace, minuit=None, **kwargs)[source]#

Bases: FitStepResult

Optimize result object.

Parameters:
modelsDatasetModels

Best fit models.

nfevint

Number of function evaluations.

total_statfloat

Value of the fit statistic at minimum.

traceTable

Parameter trace from the optimisation.

minuitMinuit, optional

Minuit object. Default is None.

kwargsdict

Extra kwargs are passed to the backend.

Attributes Summary

backend

Optimizer backend used for the fit.

message

Optimizer status message.

method

Optimizer method used for the fit.

minuit

Minuit object.

models

Best fit models.

nfev

Number of function evaluations.

parameters

Best fit parameters.

success

Fit success status flag.

total_stat

Value of the fit statistic at minimum.

trace

Parameter trace from the optimisation.

Methods Summary

to_dict()

Convert to dictionary.

Attributes Documentation

backend#

Optimizer backend used for the fit.

message#

Optimizer status message.

method#

Optimizer method used for the fit.

minuit#

Minuit object.

models#

Best fit models.

nfev#

Number of function evaluations.

parameters#

Best fit parameters.

success#

Fit success status flag.

total_stat#

Value of the fit statistic at minimum.

trace#

Parameter trace from the optimisation.

Methods Documentation

to_dict()[source]#

Convert to dictionary.