RadMax2D#
- class gammapy.irf.RadMax2D(axes, data=0, unit='', is_pointlike=False, fov_alignment=FoVAlignment.RADEC, meta=None, interp_kwargs=None)[source]#
Bases:
IRF
2D Rad Max table.
This is not directly a IRF component but is needed as additional information for point-like IRF components when an energy or field of view dependent directional cut has been applied.
Data format specification: RAD_MAX_2D.
- Parameters:
- energy_axis
MapAxis
Reconstructed energy axis.
- offset_axis
MapAxis
Field of view offset axis.
- data
Quantity
Applied directional cut.
- metadict
Metadata dictionary.
- energy_axis
Attributes Summary
MapAxes
.Alignment of the field of view coordinate axes, see
FoVAlignment
.Whether the IRF explicitly depends on offset.
Return True if rad_max axes are flat.
Whether the IRF is pointlike of full containment.
Quantity as a
Quantity
object.Map unit as a
Unit
object.Methods Summary
cumsum
(axis_name)Compute cumsum along a given axis.
evaluate
([method])Evaluate IRF.
from_hdulist
(hdulist[, hdu, format])Create from
HDUList
.from_irf
(irf)Create a RadMax2D instance from another IRF component.
from_table
(table[, format])Read from
Table
.integral
(axis_name, **kwargs)Compute integral along a given axis.
integrate_log_log
(axis_name, **kwargs)Integrate along a given axis.
interp_missing_data
(axis_name)Interpolate missing data along a given axis.
is_allclose
(other[, rtol_axes, atol_axes])Compare two data IRFs for equivalency.
normalize
(axis_name)Normalise data in place along a given axis.
pad
(pad_width, axis_name, **kwargs)Pad IRF along a given axis.
plot_rad_max_vs_energy
([ax])Plot rad max value against energy.
read
(filename[, hdu, format])Read from file.
slice_by_idx
(slices)Slice sub IRF from IRF object.
to_hdulist
([format])Write the HDU list.
to_table
([format])Convert to table.
to_table_hdu
([format])Convert to
BinTableHDU
.to_unit
(unit)Convert IRF to different unit.
write
(filename, *args, **kwargs)Write IRF to fits.
Attributes Documentation
- axes#
MapAxes
.
- data#
- default_interp_kwargs = {'bounds_error': False, 'fill_value': 0.0}#
- default_unit = Unit("deg")#
- fov_alignment#
Alignment of the field of view coordinate axes, see
FoVAlignment
.
- has_offset_axis#
Whether the IRF explicitly depends on offset.
- is_fixed_rad_max#
Return True if rad_max axes are flat.
- is_pointlike#
Whether the IRF is pointlike of full containment.
- required_axes = ['energy', 'offset']#
- tag = 'rad_max_2d'#
Methods Documentation
- cumsum(axis_name)#
Compute cumsum along a given axis.
- Parameters:
- axis_namestr
Along which axis to integrate.
- Returns:
- irf
IRF
Cumsum IRF.
- irf
- evaluate(method=None, **kwargs)#
Evaluate IRF.
- Parameters:
- **kwargsdict
Coordinates at which to evaluate the IRF.
- methodstr {‘linear’, ‘nearest’}, optional
Interpolation method.
- Returns:
- array
Quantity
Interpolated values.
- array
- classmethod from_hdulist(hdulist, hdu=None, format='gadf-dl3')#
Create from
HDUList
.- Parameters:
- hdulist
HDUList
HDU list.
- hdustr
HDU name.
- format{“gadf-dl3”}
Format specification. Default is “gadf-dl3”.
- hdulist
- Returns:
- irf
IRF
IRF class.
- irf
- classmethod from_irf(irf)[source]#
Create a RadMax2D instance from another IRF component.
This reads the RAD_MAX metadata keyword from the IRF and creates a RadMax2D with a single bin in energy and offset using the ranges from the input IRF.
- Parameters:
- irf
EffectiveAreaTable2D
orEnergyDispersion2D
IRF instance from which to read the RAD_MAX and limit information.
- irf
- Returns:
Notes
This assumes the true energy axis limits are also valid for the reconstructed energy limits.
- integral(axis_name, **kwargs)#
Compute integral along a given axis.
This method uses interpolation of the cumulative sum.
- Parameters:
- axis_namestr
Along which axis to integrate.
- **kwargsdict
Coordinates at which to evaluate the IRF.
- Returns:
- array
Quantity
Returns 2D array with axes offset.
- array
- integrate_log_log(axis_name, **kwargs)#
Integrate along a given axis.
This method uses log-log trapezoidal integration.
- Parameters:
- axis_namestr
Along which axis to integrate.
- **kwargsdict
Coordinates at which to evaluate the IRF.
- Returns:
- array
Quantity
Returns 2D array with axes offset.
- array
- interp_missing_data(axis_name)#
Interpolate missing data along a given axis.
- is_allclose(other, rtol_axes=0.001, atol_axes=1e-06, **kwargs)#
Compare two data IRFs for equivalency.
- Parameters:
- other
IRF
The IRF to compare against.
- rtol_axesfloat, optional
Relative tolerance for the axis comparison. Default is 1e-3.
- atol_axesfloat, optional
Absolute tolerance for the axis comparison. Default is 1e-6.
- **kwargsdict
Keywords passed to
numpy.allclose
.
- other
- Returns:
- is_allclosebool
Whether the IRF is all close.
- normalize(axis_name)#
Normalise data in place along a given axis.
- Parameters:
- axis_namestr
Along which axis to normalize.
- pad(pad_width, axis_name, **kwargs)#
Pad IRF along a given axis.
- plot_rad_max_vs_energy(ax=None, **kwargs)[source]#
Plot rad max value against energy.
- Parameters:
- ax
Axes
, optional Matplotlib axes. Default is None.
- **kwargsdict
Keyword arguments passed to
pcolormesh
.
- ax
- Returns:
- ax
Axes
Matplotlib axes.
- ax
- classmethod read(filename, hdu=None, format='gadf-dl3')#
Read from file.
- slice_by_idx(slices)#
Slice sub IRF from IRF object.
- to_hdulist(format='gadf-dl3')#
Write the HDU list.
- Parameters:
- format{“gadf-dl3”}, optional
Format specification. Default is “gadf-dl3”.
- to_table(format='gadf-dl3')#
Convert to table.
- Parameters:
- format{“gadf-dl3”}, optional
Format specification. Default is “gadf-dl3”.
- Returns:
- table
Table
IRF data table.
- table
- to_table_hdu(format='gadf-dl3')#
Convert to
BinTableHDU
.- Parameters:
- format{“gadf-dl3”}, optional
Format specification. Default is “gadf-dl3”.
- Returns:
- hdu
BinTableHDU
IRF data table HDU.
- hdu