AdaptiveRingBackgroundMaker#
- class gammapy.makers.AdaptiveRingBackgroundMaker(r_in, r_out_max, width, stepsize='0.02 deg', threshold_alpha=0.1, theta='0.22 deg', method='fixed_width', exclusion_mask=None)#
Bases:
Maker
Adaptive ring background algorithm.
This algorithm extends the
RingBackgroundMaker
method by adapting the size of the ring to achieve a minimum on / off exposure ratio (alpha) in regions where the area to estimate the background from is limited.- Parameters:
- r_in
Quantity
Inner radius of the ring.
- r_out_max
Quantity
Maximum outer radius of the ring.
- width
Quantity
Width of the ring.
- stepsize
Quantity
Stepsize used for increasing the radius.
- threshold_alphafloat
Threshold on alpha above which the adaptive ring takes action.
- theta
Quantity
Integration radius used for alpha computation.
- method{‘fixed_width’, ‘fixed_r_in’}
Adaptive ring method. Default is ‘fixed_width’.
- exclusion_mask
WcsNDMap
Exclusion mask.
- r_in
See also
RingBackgroundMaker.
Attributes Summary
Methods Summary
kernels
(image)Ring kernels according to the specified method.
make_cubes
(dataset)Make acceptance, off acceptance, off counts cubes.
run
(dataset[, observation])Run adaptive ring background maker.
Attributes Documentation
- tag = 'AdaptiveRingBackgroundMaker'#
Methods Documentation
- kernels(image)#
Ring kernels according to the specified method.
- Parameters:
- image
WcsNDMap
Map specifying the WCS information.
- image
- Returns:
- kernelslist
List of
Ring2DKernel
.
- make_cubes(dataset)#
Make acceptance, off acceptance, off counts cubes.
- Parameters:
- dataset
MapDataset
Input map dataset.
- dataset
- Returns:
- cubesdict of
WcsNDMap
Dictionary containing
counts_off
,acceptance
andacceptance_off
cubes.
- cubesdict of
- run(dataset, observation=None)#
Run adaptive ring background maker.
- Parameters:
- dataset
MapDataset
Input map dataset.
- dataset
- Returns:
- dataset_on_off
MapDatasetOnOff
On off dataset.
- dataset_on_off