EnergyDependentMultiGaussPSF#
- class gammapy.irf.EnergyDependentMultiGaussPSF[source]#
Bases:
ParametricPSF
Triple Gauss analytical PSF depending on true energy and offset.
- Parameters:
Examples
Plot R68 of the PSF vs. offset and true energy:
import matplotlib.pyplot as plt from gammapy.irf import EnergyDependentMultiGaussPSF filename = '$GAMMAPY_DATA/cta-1dc/caldb/data/cta/1dc/bcf/South_z20_50h/irf_file.fits' psf = EnergyDependentMultiGaussPSF.read(filename, hdu='POINT SPREAD FUNCTION') psf.plot_containment_radius(fraction=0.68) plt.show()
Attributes Summary
Methods Summary
evaluate_containment
(rad, **kwargs)Containment of the PSF at given axes coordinates.
evaluate_direct
(rad, **kwargs)Evaluate PSF model.
Attributes Documentation
- required_arguments = ['rad', 'energy_true', 'offset']#
- required_axes = ['energy_true', 'offset']#
- required_parameters = ['sigma_1', 'sigma_2', 'sigma_3', 'scale', 'ampl_2', 'ampl_3']#
- tag = 'psf_3gauss'#
Methods Documentation
- static evaluate_containment(rad, **kwargs)[source]#
Containment of the PSF at given axes coordinates.
- Parameters:
- rad
Quantity
Rad value.
- **kwargsdict
Parameters, see
required_parameters
.
- rad
- Returns:
- containment
ndarray
Containment.
- containment
- static evaluate_direct(rad, **kwargs)[source]#
Evaluate PSF model.
- Parameters:
- rad
Quantity
Rad value.
- **kwargsdict
Parameters, see
required_parameters
.
- rad
- Returns:
- value
ndarray
PSF value.
- value
- __init__(axes, data=0, unit='', is_pointlike=False, fov_alignment=FoVAlignment.RADEC, meta=None, interp_kwargs=None)#
- classmethod __new__(*args, **kwargs)#