resample_energy_edges#
- gammapy.estimators.utils.resample_energy_edges(dataset, conditions={})[source]#
Return energy edges that satisfy given condition on the per bin statistics.
- Parameters:
- dataset
SpectrumDataset
orSpectrumDatasetOnOff
The input dataset.
- conditionsdict
Keyword arguments containing the per-bin conditions used to resample the axis. Available options are: ‘counts_min’, ‘background_min’, ‘excess_min’, ‘sqrt_ts_min’, ‘npred_min’, ‘npred_background_min’, ‘npred_signal_min’. Default is {}.
- dataset
- Returns:
- energy_edgeslist of
Quantity
Energy edges for the resampled energy axis.
- energy_edgeslist of
Examples
>>> from gammapy.datasets import Datasets, SpectrumDatasetOnOff >>> from gammapy.estimators.utils import resample_energy_edges >>> >>> datasets = Datasets() >>> >>> for obs_id in [23523, 23526]: ... dataset = SpectrumDatasetOnOff.read( ... f"$GAMMAPY_DATA/joint-crab/spectra/hess/pha_obs{obs_id}.fits" ... ) ... datasets.append(dataset) >>> >>> spectrum_dataset = Datasets(datasets).stack_reduce() >>> # Resample the energy edges so the minimum sqrt_ts is 2 >>> resampled_energy_edges = resample_energy_edges( ... spectrum_dataset, ... conditions={"sqrt_ts_min": 2} ... )