ScaledRegularGridInterpolator#
- class gammapy.utils.interpolation.ScaledRegularGridInterpolator(points, values, points_scale=None, values_scale='lin', extrapolate=True, axis=None, **kwargs)[source]#
Bases:
object
Thin wrapper around
scipy.interpolate.RegularGridInterpolator
.The values are scaled before the interpolation and back-scaled after the interpolation.
Dimensions of length 1 are ignored in the interpolation of the data.
- Parameters:
- pointstuple of
ndarray
orQuantity
Tuple of points passed to
RegularGridInterpolator
.- values
ndarray
Values passed to
RegularGridInterpolator
.- points_scaletuple of str
Interpolation scale used for the points.
- values_scale{‘lin’, ‘log’, ‘sqrt’}
Interpolation scaling applied to values. If the values vary over many magnitudes a ‘log’ scaling is recommended.
- axisint or None
Axis along which to interpolate.
- method{“linear”, “nearest”}
Default interpolation method. Can be overwritten when calling the
ScaledRegularGridInterpolator
.- **kwargsdict
Keyword arguments passed to
RegularGridInterpolator
.
- pointstuple of
Methods Summary
__call__
(points[, method, clip])Interpolate data points.
Methods Documentation
- __call__(points, method=None, clip=True, **kwargs)[source]#
Interpolate data points.
- Parameters:
- pointstuple of
ndarray
orQuantity
Tuple of coordinate arrays of the form (x_1, x_2, x_3, …). Arrays are broadcast internally.
- method{None, “linear”, “nearest”}
Linear or nearest neighbour interpolation. Default is None, which is
method
defined on init.- clipbool
Clip values at zero after interpolation.
- pointstuple of