select_nested_models#
- gammapy.modeling.select_nested_models(datasets, parameters, null_values, n_sigma=2, n_free_parameters=None, fit=None)[source]#
Compute the test statistic (TS) between two nested hypothesis.
The null hypothesis is the minimal one, for which a set of parameters are frozen to given values. The model is updated to the alternative hypothesis if there is a significant improvement (larger than the given threshold).
- Parameters:
- datasets
Datasets
Datasets.
- parameters
Parameters
or list ofParameter
List of parameters frozen for the null hypothesis but free for the test hypothesis.
- null_valueslist of float or
Parameters
Values of the parameters frozen for the null hypothesis. If a
Parameters
object or a list ofParameters
is given the null hypothesis follows the values of these parameters, so this tests linked parameters versus unliked.- n_sigmafloat, optional
Threshold in number of sigma to switch from the null hypothesis to the alternative one. Default is 2. The TS is converted to sigma assuming that the Wilk’s theorem is verified.
- n_free_parametersint, optional
Number of free parameters to consider between the two hypothesis in order to estimate the
ts_threshold
from then_sigma
threshold. Default is len(parameters).- fit
Fit
, optional Fit instance specifying the backend and fit options. Default is None.
- datasets
- Returns:
- resultdict
Dictionary with the TS of the best fit value compared to the null hypothesis and fit results for the two hypotheses. Entries are:
“ts” : fit statistic difference with null hypothesis
“fit_results” : results for the best fit
“fit_results_null” : fit results for the null hypothesis
Examples
from gammapy.modeling.selection import select_nested_models from gammapy.datasets import Datasets, SpectrumDatasetOnOff from gammapy.modeling.models import SkyModel # Test if cutoff is significant dataset = SpectrumDatasetOnOff.read("$GAMMAPY_DATA/joint-crab/spectra/hess/pha_obs23523.fits") datasets = Datasets(dataset) model = SkyModel.create(spectral_model="ecpl", spatial_model="point", name='hess') datasets.models = model result = select_nested_models(datasets, parameters=[model.spectral_model.lambda_], null_values=[0], ) # Test if source is significant filename = "$GAMMAPY_DATA/fermi-3fhl-crab/Fermi-LAT-3FHL_datasets.yaml" filename_models = "$GAMMAPY_DATA/fermi-3fhl-crab/Fermi-LAT-3FHL_models.yaml" fermi_datasets = Datasets.read(filename=filename, filename_models=filename_models) model = fermi_datasets.models["Crab Nebula"] # Number of parameters previously fit for the source of interest n_free_parameters = len(model.parameters.free_parameters) # Freeze spatial parameters to ensure another weaker source does not move from its position # to replace the source of interest during the null hypothesis test. # (with all parameters free you test N vs. N+1 models and not the detection of a specific source.) fermi_datasets.models.freeze(model_type='spatial') results = select_nested_models(fermi_datasets, parameters=[model.spectral_model.amplitude], null_values=[0], n_free_parameters=n_free_parameters, n_sigma=4, )