TemporalModel#
- class gammapy.modeling.models.TemporalModel[source]#
Bases:
ModelBaseTemporal model base class.
Evaluates on
Timeobjects.Attributes Summary
Reference time in MJD.
Methods Summary
__call__(time[, energy])Evaluate model.
from_dict(data, **kwargs)Create a temporal model from a dictionary.
integral(t_min, t_max[, oversampling_factor])Evaluate the integrated flux within the given time intervals.
plot(time_range[, ax, n_points])Plot the temporal model.
sample_time(n_events, t_min, t_max[, ...])Sample arrival times of events.
time_sum(t_min, t_max)Total time between t_min and t_max.
to_dict([full_output])Create dictionary for YAML serilisation.
Attributes Documentation
- default_parameters = <gammapy.modeling.parameter.Parameters object>#
- is_energy_dependent#
- reference_time#
Reference time in MJD.
- type#
Methods Documentation
- classmethod from_dict(data, **kwargs)[source]#
Create a temporal model from a dictionary.
- Parameters:
- datadict
Dictionary containing the model parameters.
- **kwargsdict
Keyword arguments passed to
from_parameters.
- integral(t_min, t_max, oversampling_factor=100, **kwargs)[source]#
Evaluate the integrated flux within the given time intervals.
- Parameters:
- t_min: `~astropy.time.Time`
Start times of observation.
- t_max: `~astropy.time.Time`
Stop times of observation.
- oversampling_factorint, optional
Oversampling factor to be used for numerical integration. Default is 100.
- Returns:
- normfloat
Integrated flux norm on the given time intervals.
- sample_time(n_events, t_min, t_max, t_delta='1 s', random_state=0)[source]#
Sample arrival times of events.
- Parameters:
- n_eventsint
Number of events to sample.
- t_min
Time Start time of the sampling.
- t_max
Time Stop time of the sampling.
- t_delta
Quantity, optional Time step used for sampling of the temporal model. Default is 1 s.
- random_state{int, ‘random-seed’, ‘global-rng’,
RandomState} Defines random number generator initialisation. Passed to
get_random_state. Default is 0.
- Returns:
- time
Quantity Array with times of the sampled events.
- time
- classmethod __new__(*args, **kwargs)#