TemporalModel#
- class gammapy.modeling.models.TemporalModel(**kwargs)[source]#
Bases:
ModelBase
Temporal model base class.
Evaluates on
Time
objects.Attributes Summary
Frozen status of a model, True if all parameters are frozen.
Parameters as a
Parameters
object.Reference time in MJD.
Methods Summary
__call__
(time[, energy])Evaluate model.
copy
(**kwargs)Deep copy.
freeze
()Freeze all parameters.
from_dict
(data, **kwargs)Create a temporal model from a dictionary.
from_parameters
(parameters, **kwargs)Create model from parameter list.
integral
(t_min, t_max[, oversampling_factor])Evaluate the integrated flux within the given time intervals.
plot
(time_range[, ax, n_points])Plot the temporal model.
reassign
(datasets_names, new_datasets_names)Reassign a model from one dataset to another.
sample_time
(n_events, t_min, t_max[, ...])Sample arrival times of events.
time_sum
(t_min, t_max)Total time between t_min and t_max.
to_dict
([full_output])Create dictionary for YAML serilisation.
unfreeze
()Restore parameters frozen status to default.
Attributes Documentation
- covariance#
- default_parameters = <gammapy.modeling.parameter.Parameters object>#
- frozen#
Frozen status of a model, True if all parameters are frozen.
- is_energy_dependent#
- parameters#
Parameters as a
Parameters
object.
- parameters_unique_names#
- reference_time#
Reference time in MJD.
- type#
Methods Documentation
- copy(**kwargs)#
Deep copy.
- freeze()#
Freeze all parameters.
- classmethod from_dict(data, **kwargs)[source]#
Create a temporal model from a dictionary.
- Parameters:
- datadict
Dictionary containing the model parameters.
- **kwargsdict
Keyword arguments passed to
from_parameters
.
- classmethod from_parameters(parameters, **kwargs)#
Create model from parameter list.
- Parameters:
- parameters
Parameters
Parameters for init.
- parameters
- Returns:
- model
Model
Model instance.
- model
- integral(t_min, t_max, oversampling_factor=100, **kwargs)[source]#
Evaluate the integrated flux within the given time intervals.
- Parameters:
- t_min: `~astropy.time.Time`
Start times of observation.
- t_max: `~astropy.time.Time`
Stop times of observation.
- oversampling_factorint, optional
Oversampling factor to be used for numerical integration. Default is 100.
- Returns:
- normfloat
Integrated flux norm on the given time intervals.
- reassign(datasets_names, new_datasets_names)#
Reassign a model from one dataset to another.
- Parameters:
- datasets_namesstr or list
Name of the datasets where the model is currently defined.
- new_datasets_namesstr or list
Name of the datasets where the model should be defined instead. If multiple names are given the two list must have the save length, as the reassignment is element-wise.
- Returns:
- model
Model
Reassigned model.
- model
- sample_time(n_events, t_min, t_max, t_delta='1 s', random_state=0)[source]#
Sample arrival times of events.
- Parameters:
- n_eventsint
Number of events to sample.
- t_min
Time
Start time of the sampling.
- t_max
Time
Stop time of the sampling.
- t_delta
Quantity
, optional Time step used for sampling of the temporal model. Default is 1 s.
- random_state{int, ‘random-seed’, ‘global-rng’,
RandomState
} Defines random number generator initialisation. Passed to
get_random_state
. Default is 0.
- Returns:
- time
Quantity
Array with times of the sampled events.
- time
- unfreeze()#
Restore parameters frozen status to default.