Paczynski1990Velocity#

class gammapy.astro.population.Paczynski1990Velocity[source]#

Bases: Fittable1DModel

Distribution by Lyne 1982 and adopted by Paczynski and Faucher.

\[f(v) = A\frac{4}{\pi} \frac{1}{v_0 \left[1 + (v / v_0) ^ 2 \right] ^ 2}\]

Formula (3) in [1].

Parameters:
amplitudefloat

Value of the integral.

v_0float

Velocity parameter (km s^-1).

References

Attributes Summary

amplitude

param_names

Names of the parameters that describe models of this type.

v_0

Methods Summary

evaluate(v, amplitude, v_0)

One dimensional Paczynski 1990 velocity model function.

Attributes Documentation

amplitude#
param_names = ('amplitude', 'v_0')#

Names of the parameters that describe models of this type.

The parameters in this tuple are in the same order they should be passed in when initializing a model of a specific type. Some types of models, such as polynomial models, have a different number of parameters depending on some other property of the model, such as the degree.

When defining a custom model class the value of this attribute is automatically set by the Parameter attributes defined in the class body.

v_0#

Methods Documentation

static evaluate(v, amplitude, v_0)[source]#

One dimensional Paczynski 1990 velocity model function.

__init__(amplitude=1, v_0=560, **kwargs)[source]#
classmethod __new__(*args, **kwargs)#