EnergyDispersion2D#
- class gammapy.irf.EnergyDispersion2D(axes, data=0, unit='', is_pointlike=False, fov_alignment=FoVAlignment.RADEC, meta=None, interp_kwargs=None)[source]#
Bases:
IRF
Offset-dependent energy dispersion matrix.
Data format specification: EDISP_2D
- Parameters:
See also
EnergyDispersion.
Examples
Read energy dispersion IRF from disk:
>>> from gammapy.maps import MapAxis, MapAxes >>> from gammapy.irf import EnergyDispersion2D >>> filename = '$GAMMAPY_DATA/hess-dl3-dr1/data/hess_dl3_dr1_obs_id_020136.fits.gz' >>> edisp2d = EnergyDispersion2D.read(filename, hdu="EDISP")
Create energy dispersion matrix (
EnergyDispersion
) for a given field of view offset and energy binning:>>> energy_axis = MapAxis.from_bounds(0.1, 20, nbin=60, unit="TeV", interp="log", name='energy') >>> edisp = edisp2d.to_edisp_kernel(offset='1.2 deg', energy_axis=energy_axis, ... energy_axis_true=energy_axis.copy(name='energy_true'))
Create energy dispersion IRF from axes:
>>> energy_axis_true = MapAxis.from_energy_bounds("1 TeV", "10 TeV", nbin=10, name="energy_true") >>> offset_axis = MapAxis.from_bounds(0, 1, nbin=3, unit="deg", name="offset", node_type="edges") >>> migra_axis = MapAxis.from_bounds(0, 3, nbin=3, name="migra", node_type="edges") >>> axes = MapAxes([energy_axis_true, migra_axis, offset_axis]) >>> edisp2d_axes = EnergyDispersion2D(axes=axes)
Attributes Summary
MapAxes
.Alignment of the field of view coordinate axes, see
FoVAlignment
.Whether the IRF explicitly depends on offset.
Whether the IRF is pointlike of full containment.
Quantity as a
Quantity
object.Map unit as a
Unit
object.Methods Summary
cumsum
(axis_name)Compute cumsum along a given axis.
evaluate
([method])Evaluate IRF.
from_gauss
(energy_axis_true, migra_axis, ...)Create Gaussian energy dispersion matrix (
EnergyDispersion2D
).from_hdulist
(hdulist[, hdu, format])Create from
HDUList
.from_table
(table[, format])Read from
Table
.integral
(axis_name, **kwargs)Compute integral along a given axis.
integrate_log_log
(axis_name, **kwargs)Integrate along a given axis.
interp_missing_data
(axis_name)Interpolate missing data along a given axis.
is_allclose
(other[, rtol_axes, atol_axes])Compare two data IRFs for equivalency.
Normalise energy dispersion.
pad
(pad_width, axis_name, **kwargs)Pad IRF along a given axis.
peek
([figsize])Quick-look summary plots.
plot_bias
([ax, offset, add_cbar, axes_loc, ...])Plot migration as a function of true energy for a given offset.
plot_migration
([ax, offset, energy_true])Plot energy dispersion for given offset and true energy.
read
(filename[, hdu, format])Read from file.
slice_by_idx
(slices)Slice sub IRF from IRF object.
to_edisp_kernel
(offset[, energy_axis_true, ...])Detector response R(Delta E_reco, Delta E_true).
to_hdulist
([format])Write the HDU list.
to_table
([format])Convert to table.
to_table_hdu
([format])Convert to
BinTableHDU
.to_unit
(unit)Convert IRF to different unit.
write
(filename, *args, **kwargs)Write IRF to fits.
Attributes Documentation
- axes#
MapAxes
.
- data#
- default_interp_kwargs = {'bounds_error': False, 'fill_value': 0.0}#
- default_unit = Unit(dimensionless)#
- fov_alignment#
Alignment of the field of view coordinate axes, see
FoVAlignment
.
- has_offset_axis#
Whether the IRF explicitly depends on offset.
- is_pointlike#
Whether the IRF is pointlike of full containment.
- required_axes = ['energy_true', 'migra', 'offset']#
- tag = 'edisp_2d'#
Methods Documentation
- cumsum(axis_name)#
Compute cumsum along a given axis.
- Parameters:
- axis_namestr
Along which axis to integrate.
- Returns:
- irf
IRF
Cumsum IRF.
- irf
- evaluate(method=None, **kwargs)#
Evaluate IRF.
- Parameters:
- **kwargsdict
Coordinates at which to evaluate the IRF.
- methodstr {‘linear’, ‘nearest’}, optional
Interpolation method.
- Returns:
- array
Quantity
Interpolated values.
- array
- classmethod from_gauss(energy_axis_true, migra_axis, offset_axis, bias, sigma, pdf_threshold=1e-06)[source]#
Create Gaussian energy dispersion matrix (
EnergyDispersion2D
).The output matrix will be Gaussian in (energy_true / energy).
The
bias
andsigma
should be either floats or arrays of same dimension thanenergy_true
.bias
refers to the mean value of themigra
distribution minus one, i.e.bias=0
means no bias.Note that, the output matrix is flat in offset.
- Parameters:
- energy_axis_true
MapAxis
True energy axis.
- migra_axis
Quantity
Migra axis.
- offset_axis
Quantity
Bin edges of offset.
- biasfloat or
ndarray
Center of Gaussian energy dispersion, bias.
- sigmafloat or
ndarray
RMS width of Gaussian energy dispersion, resolution.
- pdf_thresholdfloat, optional
Zero suppression threshold. Default is 1e-6.
- energy_axis_true
- classmethod from_hdulist(hdulist, hdu=None, format='gadf-dl3')#
Create from
HDUList
.- Parameters:
- hdulist
HDUList
HDU list.
- hdustr
HDU name.
- format{“gadf-dl3”}
Format specification. Default is “gadf-dl3”.
- hdulist
- Returns:
- irf
IRF
IRF class.
- irf
- integral(axis_name, **kwargs)#
Compute integral along a given axis.
This method uses interpolation of the cumulative sum.
- Parameters:
- axis_namestr
Along which axis to integrate.
- **kwargsdict
Coordinates at which to evaluate the IRF.
- Returns:
- array
Quantity
Returns 2D array with axes offset.
- array
- integrate_log_log(axis_name, **kwargs)#
Integrate along a given axis.
This method uses log-log trapezoidal integration.
- Parameters:
- axis_namestr
Along which axis to integrate.
- **kwargsdict
Coordinates at which to evaluate the IRF.
- Returns:
- array
Quantity
Returns 2D array with axes offset.
- array
- interp_missing_data(axis_name)#
Interpolate missing data along a given axis.
- is_allclose(other, rtol_axes=0.001, atol_axes=1e-06, **kwargs)#
Compare two data IRFs for equivalency.
- Parameters:
- other
IRF
The IRF to compare against.
- rtol_axesfloat, optional
Relative tolerance for the axis comparison. Default is 1e-3.
- atol_axesfloat, optional
Absolute tolerance for the axis comparison. Default is 1e-6.
- **kwargsdict
Keywords passed to
numpy.allclose
.
- other
- Returns:
- is_allclosebool
Whether the IRF is all close.
- pad(pad_width, axis_name, **kwargs)#
Pad IRF along a given axis.
- peek(figsize=(15, 5))[source]#
Quick-look summary plots.
- Parameters:
- figsizetuple, optional
Size of the resulting plot. Default is (15, 5).
- plot_bias(ax=None, offset=None, add_cbar=False, axes_loc=None, kwargs_colorbar=None, **kwargs)[source]#
Plot migration as a function of true energy for a given offset.
- Parameters:
- ax
Axes
, optional Matplotlib axes. Default is None.
- offset
Angle
, optional Offset. Default is None.
- add_cbarbool, optional
Add a colorbar to the plot. Default is False.
- axes_locdict, optional
Keyword arguments passed to
append_axes
.- kwargs_colorbardict, optional
Keyword arguments passed to
colorbar
.- kwargsdict
Keyword arguments passed to
pcolormesh
.
- ax
- Returns:
- ax
Axes
Matplotlib axes.
- ax
- plot_migration(ax=None, offset=None, energy_true=None, **kwargs)[source]#
Plot energy dispersion for given offset and true energy.
- classmethod read(filename, hdu=None, format='gadf-dl3')#
Read from file.
- slice_by_idx(slices)#
Slice sub IRF from IRF object.
- to_edisp_kernel(offset, energy_axis_true=None, energy_axis=None)[source]#
Detector response R(Delta E_reco, Delta E_true).
Probability to reconstruct an energy in a given true energy band in a given reconstructed energy band.
- Parameters:
- Returns:
- edisp
EDispKernel
Energy dispersion matrix.
- edisp
- to_hdulist(format='gadf-dl3')#
Write the HDU list.
- Parameters:
- format{“gadf-dl3”}, optional
Format specification. Default is “gadf-dl3”.
- to_table(format='gadf-dl3')#
Convert to table.
- Parameters:
- format{“gadf-dl3”}, optional
Format specification. Default is “gadf-dl3”.
- Returns:
- table
Table
IRF data table.
- table
- to_table_hdu(format='gadf-dl3')#
Convert to
BinTableHDU
.- Parameters:
- format{“gadf-dl3”}, optional
Format specification. Default is “gadf-dl3”.
- Returns:
- hdu
BinTableHDU
IRF data table HDU.
- hdu