TemplateNPredModel#

class gammapy.modeling.models.TemplateNPredModel[source]#

Bases: ModelBase

Background model.

Create a new map by a tilt and normalization on the available map.

Parameters:
mapMap

Background model map.

spectral_modelSpectralModel

Normalized spectral model. Default is PowerLawNormSpectralModel.

copy_databool

Create a deepcopy of the map data or directly use the original. Default is True. Use False to save memory in case of large maps.

spatial_modelSpatialModel

Unitless Spatial model (unit is dropped on evaluation if defined). Default is None.

Attributes Summary

default_parameters

energy_center

True energy axis bin centers as a Quantity.

evaluation_radius

Evaluation radius as a Angle.

map

A lazy FITS data descriptor.

name

parameters

Parameters as a Parameters object.

parameters_unique_names

List of unique parameter names.

position

Position as a SkyCoord.

spectral_model

Spectral model as a SpectralModel object.

tag

Methods Summary

copy([name, copy_data])

Copy template npred model.

cutout(position, width[, mode, name])

Cutout background model.

evaluate()

Evaluate background model.

freeze([model_type])

Freeze model parameters.

from_dict(data, **kwargs)

slice_by_energy([energy_min, energy_max, name])

Select and slice model template in energy range.

stack(other[, weights, nan_to_num])

Stack background model in place.

to_dict([full_output])

Create dictionary for YAML serialisation.

unfreeze([model_type])

Restore parameters frozen status to default.

write([overwrite])

Write the map.

Attributes Documentation

default_parameters = <gammapy.modeling.parameter.Parameters object>#
energy_center#

True energy axis bin centers as a Quantity.

evaluation_radius#

Evaluation radius as a Angle.

map#

A lazy FITS data descriptor.

Parameters:
cachebool

Whether to cache the data.

name#
parameters#
parameters_unique_names#

List of unique parameter names. Return formatted as par_type.par_name.

position#

Position as a SkyCoord.

spectral_model#

Spectral model as a SpectralModel object.

tag = 'TemplateNPredModel'#

Methods Documentation

copy(name=None, copy_data=False, **kwargs)[source]#

Copy template npred model.

Parameters:
namestr, optional

Assign a new name to the copied model. Default is None.

copy_databool, optional

Copy the data arrays attached to models. Default is False.

**kwargsdict

Keyword arguments forwarded to TemplateNPredModel.

Returns:
modelTemplateNPredModel

Copied template npred model.

cutout(position, width, mode='trim', name=None)[source]#

Cutout background model.

Parameters:
positionSkyCoord

Center position of the cutout region.

widthtuple of Angle

Angular sizes of the region in (lon, lat) in that specific order. If only one value is passed, a square region is extracted.

mode{‘trim’, ‘partial’, ‘strict’}

Mode option for Cutout2D, for details see Cutout2D. Default is “trim”.

namestr, optional

Name of the returned background model. Default is None.

Returns:
cutoutTemplateNPredModel

Cutout background model.

evaluate()[source]#

Evaluate background model.

Returns:
background_mapMap

Background evaluated on the Map.

freeze(model_type='spectral')[source]#

Freeze model parameters.

classmethod from_dict(data, **kwargs)[source]#
slice_by_energy(energy_min=None, energy_max=None, name=None)[source]#

Select and slice model template in energy range.

Parameters:
energy_min, energy_maxQuantity

Energy bounds of the slice. Default is None.

namestr

Name of the sliced model. Default is None.

Returns:
modelTemplateNpredModel

Sliced Model.

stack(other, weights=None, nan_to_num=True)[source]#

Stack background model in place.

Stacking the background model resets the current parameters values.

Parameters:
otherTemplateNPredModel

Other background model.

weightsfloat, optional

Weights. Default is None.

nan_to_num: bool, optional

Non-finite values are replaced by zero if True. Default is True.

to_dict(full_output=False)[source]#

Create dictionary for YAML serialisation.

unfreeze(model_type='spectral')[source]#

Restore parameters frozen status to default.

write(overwrite=False)[source]#

Write the map.

Parameters:
overwrite: bool, optional

Overwrite existing file. Default is False, which will raise a warning if the template file exists already.

__init__(map, spectral_model=None, name=None, filename=None, datasets_names=None, copy_data=True, spatial_model=None, covariance_data=None)[source]#
classmethod __new__(*args, **kwargs)#