TemplateSpatialModel#
- class gammapy.modeling.models.TemplateSpatialModel[source]#
Bases:
SpatialModelSpatial sky map template model.
For more information see Template spatial model. By default, the position of the model is fixed at the center of the map. The position can be fitted by unfreezing the
lon_0andlat_0parameters. In that case, the coordinate of every pixel is shifted in lon and lat in the frame of the map. NOTE: planar distances are calculated, so the results are correct only when the fitted position is close to the map center.- Parameters:
- map
Map Map template.
- metadict, optional
Meta information, meta[‘filename’] will be used for serialisation.
- normalizebool
Normalize the input map so that it integrates to unity.
- interp_kwargsdict
Interpolation keyword arguments passed to
gammapy.maps.Map.interp_by_coord. Default arguments are {‘method’: ‘linear’, ‘fill_value’: 0, “values_scale”: “log”}.- filenamestr
Name of the map file.
- copy_databool
Create a deepcopy of the map data or directly use the original. Default is True. Use False to save memory in case of large maps.
- **kwargsdict
Keyword arguments forwarded to
SpatialModel.__init__.
- map
Attributes Summary
Evaluation radius as an
Angle.A model parameter.
A model parameter.
Template map as a
Mapobject.Spatial model center position
(lon, lat)in radians and frame of the model.Methods Summary
copy([copy_data])Copy model.
evaluate(lon, lat[, energy, lon_0, lat_0])Evaluate the model at given coordinates.
from_dict(data)Create a spatial model from a dictionary.
plot([ax, geom])Plot spatial model.
plot_interactive([ax, geom])Plot spatial model.
read(filename[, normalize])Read spatial template model from FITS image.
to_dict([full_output])Create dictionary for YAML serialisation.
to_region(**kwargs)Model outline from template map boundary as a
RectangleSkyRegion.write([overwrite, filename])Write the map.
Attributes Documentation
- default_parameters = <gammapy.modeling.parameter.Parameters object>#
- is_energy_dependent#
- lat_0#
A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value,quantityorminandmaxproperties and consider the fact that there is afactorandscalean implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor,factor_minandfactor_maxproperties, i.e. the optimiser “sees” the well-scaled problem.- Parameters:
- namestr
Name.
- valuefloat or
Quantity Value.
- scalefloat, optional
Scale (sometimes used in fitting).
- unit
Unitor str, optional Unit. Default is “”.
- minfloat, str or
quantity, optional Minimum (sometimes used in fitting). If
None, set tonumpy.nan. Default is None.- maxfloat, str or
quantity, optional Maximum (sometimes used in fitting). Default is
numpy.nan.- frozenbool, optional
Frozen (used in fitting). Default is False.
- errorfloat, optional
Parameter error. Default is 0.
- scan_minfloat, optional
Minimum value for the parameter scan. Overwrites scan_n_sigma. Default is None.
- scan_maxfloat, optional
Maximum value for the parameter scan. Overwrites scan_n_sigma. Default is None.
- scan_n_values: int, optional
Number of values to be used for the parameter scan. Default is 11.
- scan_n_sigmaint, optional
Number of sigmas to scan. Default is 2.
- scan_values: `numpy.array`, optional
Scan values. Overwrites all the scan keywords before. Default is None.
- scale_method{‘scale10’, ‘factor1’, None}, optional
Method used to set
factorandscale. Default is “scale10”.- interp{“lin”, “sqrt”, “log”}, optional
Parameter scaling to use for the scan. Default is “lin”.
- prior
Prior, optional Prior set on the parameter. Default is None.
- lon_0#
A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value,quantityorminandmaxproperties and consider the fact that there is afactorandscalean implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor,factor_minandfactor_maxproperties, i.e. the optimiser “sees” the well-scaled problem.- Parameters:
- namestr
Name.
- valuefloat or
Quantity Value.
- scalefloat, optional
Scale (sometimes used in fitting).
- unit
Unitor str, optional Unit. Default is “”.
- minfloat, str or
quantity, optional Minimum (sometimes used in fitting). If
None, set tonumpy.nan. Default is None.- maxfloat, str or
quantity, optional Maximum (sometimes used in fitting). Default is
numpy.nan.- frozenbool, optional
Frozen (used in fitting). Default is False.
- errorfloat, optional
Parameter error. Default is 0.
- scan_minfloat, optional
Minimum value for the parameter scan. Overwrites scan_n_sigma. Default is None.
- scan_maxfloat, optional
Maximum value for the parameter scan. Overwrites scan_n_sigma. Default is None.
- scan_n_values: int, optional
Number of values to be used for the parameter scan. Default is 11.
- scan_n_sigmaint, optional
Number of sigmas to scan. Default is 2.
- scan_values: `numpy.array`, optional
Scan values. Overwrites all the scan keywords before. Default is None.
- scale_method{‘scale10’, ‘factor1’, None}, optional
Method used to set
factorandscale. Default is “scale10”.- interp{“lin”, “sqrt”, “log”}, optional
Parameter scaling to use for the scan. Default is “lin”.
- prior
Prior, optional Prior set on the parameter. Default is None.
- map_center#
- position_lonlat#
Spatial model center position
(lon, lat)in radians and frame of the model.
- tag = ['TemplateSpatialModel', 'template']#
Methods Documentation
- copy(copy_data=False, **kwargs)[source]#
Copy model.
- Parameters:
- copy_databool
Whether to copy the data. Default is False.
- **kwargsdict
Keyword arguments forwarded to
TemplateSpatialModel.
- Returns:
- model
TemplateSpatialModel Copied template spatial model.
- model
- evaluate(lon, lat, energy=None, lon_0=None, lat_0=None)[source]#
Evaluate the model at given coordinates.
Note that, if the map data assume negative values, these are clipped to zero.
- classmethod from_dict(data)[source]#
Create a spatial model from a dictionary.
- Parameters:
- datadict
Dictionary containing model parameters.
- kwargsdict
Keyword arguments passed to
from_parameters.
- classmethod read(filename, normalize=True, **kwargs)[source]#
Read spatial template model from FITS image.
If unit is not given in the FITS header the default is
sr-1.- Parameters:
- filenamestr
FITS image filename.
- normalizebool
Normalize the input map so that it integrates to unity.
- kwargsdict
Keyword arguments passed to
Map.read().
- to_region(**kwargs)[source]#
Model outline from template map boundary as a
RectangleSkyRegion.
- write(overwrite=False, filename=None)[source]#
Write the map.
- Parameters:
- overwritebool, optional
Overwrite existing file. Default is False, which will raise a warning if the template file exists already.
- filenamestr, optional
Filename of the template model. By default, the template model will be saved with the
TemplateSpatialModel.filenameattribute, iffilenameis provided this attribute will be updated.
- __init__(map, meta=None, normalize=True, interp_kwargs=None, filename=None, copy_data=True, **kwargs)[source]#
- classmethod __new__(*args, **kwargs)#