FaucherKaspi2006VelocityBimodal#

class gammapy.astro.population.FaucherKaspi2006VelocityBimodal[source]#

Bases: Fittable1DModel

Bimodal pulsar velocity distribution.

\[f(v) = A\sqrt{\frac{2}{\pi}} v^2 \left[\frac{w}{\sigma_1^3} \exp \left(-\frac{v^2}{2\sigma_1^2} \right) + \frac{1-w}{\sigma_2^3} \exp \left(-\frac{v^2}{2\sigma_2^2} \right) \right]\]

Formula (7) in [1].

Parameters:
amplitudefloat

Value of the integral.

sigma1float

See model formula.

sigma2float

See model formula.

wfloat

See model formula.

References

Attributes Summary

amplitude

param_names

Names of the parameters that describe models of this type.

sigma_1

sigma_2

w

Methods Summary

evaluate(v, amplitude, sigma_1, sigma_2, w)

One dimensional Faucher-Guigere & Kaspi 2006 velocity model function.

Attributes Documentation

amplitude#
param_names = ('amplitude', 'sigma_1', 'sigma_2', 'w')#

Names of the parameters that describe models of this type.

The parameters in this tuple are in the same order they should be passed in when initializing a model of a specific type. Some types of models, such as polynomial models, have a different number of parameters depending on some other property of the model, such as the degree.

When defining a custom model class the value of this attribute is automatically set by the Parameter attributes defined in the class body.

sigma_1#
sigma_2#
w#

Methods Documentation

static evaluate(v, amplitude, sigma_1, sigma_2, w)[source]#

One dimensional Faucher-Guigere & Kaspi 2006 velocity model function.

__init__(amplitude=1, sigma_1=160, sigma_2=780, w=0.9, **kwargs)[source]#
classmethod __new__(*args, **kwargs)#