PriorParameter#
- class gammapy.modeling.PriorParameter(name, value, unit='', scale=1, min=nan, max=nan, error=0, scale_method='scale10', scale_transform='lin')[source]#
Bases:
Parameter
Attributes Summary
Confidence maximum value as a
float
.Confidence minimum value as a
float
.Factor as a float.
Factor maximum as a float (used by the optimizer).
Factor minimum as a float (used by the optimizer).
Frozen (used in fitting) (bool).
Maximum as a float.
Minimum as a float.
Name as a string.
Prior applied to the parameter as a
Prior
.Value times unit as a
Quantity
.Scale as a float.
Method used to set
factor
andscale
.scale interp : {"lin", "sqrt", "log"}
Stat scan maximum.
Stat scan minimum.
Stat scan n sigma.
Stat scan values as a
ndarray
.Unit as a
Unit
object.Value = factor x scale (float).
Methods Summary
Apply `interpolation_scale' and `scale_method' to the parameter.
Emit a warning or error if value is outside the minimum/maximum range.
copy
()Deep copy.
inverse_transform
(factor)Inverse tranform from factor (used by the optimizer) to value.
Reset scaling such as factor=value, scale=1.
set_lim
([min, max])Set the min and/or max value for the parameter.
to_dict
()Convert to dictionary.
transform
(value[, update_scale])Tranform from value to factor (used by the optimizer).
update_from_dict
(data)Update parameters from a dictionary.
update_scale
(value)Update the parameter scale.
Attributes Documentation
- conf_max#
Confidence maximum value as a
float
. Return parameter maximum if defined, otherwise a default is estimated from value and error.
- conf_min#
Confidence minimum value as a
float
. Return parameter minimum if defined, otherwise a default is estimated from value and error.
- error#
- factor#
Factor as a float.
- factor_max#
Factor maximum as a float (used by the optimizer).
By default when no transform is applied,
factor_max = max / scale
, otherwisefactor_max = transform(max)
.
- factor_min#
Factor minimum as a float (used by the optimizer).
By default when no transform is applied,
factor_min = min / scale
, otherwisefactor_min = transform(min)
.
- frozen#
Frozen (used in fitting) (bool).
- max#
Maximum as a float.
- min#
Minimum as a float.
- name#
Name as a string.
- scale#
Scale as a float.
- scale_method#
Method used to set
factor
andscale
.
- scale_transform#
scale interp : {“lin”, “sqrt”, “log”}
- scan_max#
Stat scan maximum.
- scan_min#
Stat scan minimum.
- scan_n_sigma#
Stat scan n sigma.
- type#
- value#
Value = factor x scale (float).
Methods Documentation
- check_limits()#
Emit a warning or error if value is outside the minimum/maximum range.
- copy()#
Deep copy.
- inverse_transform(factor)#
Inverse tranform from factor (used by the optimizer) to value.
- Parameters:
- valuefloat
Parameter factor
- prior_stat_sum()#
- reset_autoscale()#
Reset scaling such as factor=value, scale=1.
- set_lim(min=None, max=None)#
Set the min and/or max value for the parameter.
- transform(value, update_scale=False)#
Tranform from value to factor (used by the optimizer).
- Parameters:
- valuefloat
Parameter value
- update_scalebool, optional
Update the scaling (used by the autoscale). Default is False.
- update_from_dict(data)#
Update parameters from a dictionary.
- update_scale(value)#
Update the parameter scale.
Set
factor
andscale
according toscale_method
attribute.Available
scale_method
.scale10
setsscale
to power of 10, so that abs(factor) is in the range 1 to 10factor1
setsfactor, scale = 1, value
In both cases the sign of value is stored in
factor
, i.e. thescale
is always positive. Ifscale_method
is None the scaling is ignored.