SineTemporalModel#

class gammapy.modeling.models.SineTemporalModel[source]#

Bases: TemporalModel

Temporal model with a sinusoidal modulation.

For more information see Sine temporal model.

Parameters:
ampfloat

Amplitude of the sinusoidal function. Default is 1.

t_ref: `~astropy.units.Quantity`

The reference time in mjd. Default is 2000-01-01.

omega: `~astropy.units.Quantity`

Pulsation of the signal. Default is 1 rad/day.

Attributes Summary

amp

A model parameter.

default_parameters

omega

A model parameter.

t_ref

A model parameter.

tag

Methods Summary

evaluate(time, amp, omega, t_ref)

Evaluate at given times.

integral(t_min, t_max)

Evaluate the integrated flux within the given time intervals.

Attributes Documentation

amp#

A model parameter.

Note that the parameter value has been split into a factor and scale like this:

value = factor x scale

Users should interact with the value, quantity or min and max properties and consider the fact that there is a factor and scale an implementation detail.

That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the factor, factor_min and factor_max properties, i.e. the optimiser “sees” the well-scaled problem.

Parameters:
namestr

Name.

valuefloat or Quantity

Value.

scalefloat, optional

Scale (sometimes used in fitting).

unitUnit or str, optional

Unit. Default is “”.

minfloat, str or quantity, optional

Minimum (sometimes used in fitting). If None, set to numpy.nan. Default is None.

maxfloat, str or quantity, optional

Maximum (sometimes used in fitting). Default is numpy.nan.

frozenbool, optional

Frozen (used in fitting). Default is False.

errorfloat, optional

Parameter error. Default is 0.

scan_minfloat, optional

Minimum value for the parameter scan. Overwrites scan_n_sigma. Default is None.

scan_maxfloat, optional

Maximum value for the parameter scan. Overwrites scan_n_sigma. Default is None.

scan_n_values: int, optional

Number of values to be used for the parameter scan. Default is 11.

scan_n_sigmaint, optional

Number of sigmas to scan. Default is 2.

scan_values: `numpy.array`, optional

Scan values. Overwrites all the scan keywords before. Default is None.

scale_method{‘scale10’, ‘factor1’, None}, optional

Method used to set factor and scale. Default is “scale10”.

interp{“lin”, “sqrt”, “log”}, optional

Parameter scaling to use for the scan. Default is “lin”.

priorPrior, optional

Prior set on the parameter. Default is None.

default_parameters = <gammapy.modeling.parameter.Parameters object>#
omega#

A model parameter.

Note that the parameter value has been split into a factor and scale like this:

value = factor x scale

Users should interact with the value, quantity or min and max properties and consider the fact that there is a factor and scale an implementation detail.

That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the factor, factor_min and factor_max properties, i.e. the optimiser “sees” the well-scaled problem.

Parameters:
namestr

Name.

valuefloat or Quantity

Value.

scalefloat, optional

Scale (sometimes used in fitting).

unitUnit or str, optional

Unit. Default is “”.

minfloat, str or quantity, optional

Minimum (sometimes used in fitting). If None, set to numpy.nan. Default is None.

maxfloat, str or quantity, optional

Maximum (sometimes used in fitting). Default is numpy.nan.

frozenbool, optional

Frozen (used in fitting). Default is False.

errorfloat, optional

Parameter error. Default is 0.

scan_minfloat, optional

Minimum value for the parameter scan. Overwrites scan_n_sigma. Default is None.

scan_maxfloat, optional

Maximum value for the parameter scan. Overwrites scan_n_sigma. Default is None.

scan_n_values: int, optional

Number of values to be used for the parameter scan. Default is 11.

scan_n_sigmaint, optional

Number of sigmas to scan. Default is 2.

scan_values: `numpy.array`, optional

Scan values. Overwrites all the scan keywords before. Default is None.

scale_method{‘scale10’, ‘factor1’, None}, optional

Method used to set factor and scale. Default is “scale10”.

interp{“lin”, “sqrt”, “log”}, optional

Parameter scaling to use for the scan. Default is “lin”.

priorPrior, optional

Prior set on the parameter. Default is None.

t_ref#

A model parameter.

Note that the parameter value has been split into a factor and scale like this:

value = factor x scale

Users should interact with the value, quantity or min and max properties and consider the fact that there is a factor and scale an implementation detail.

That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the factor, factor_min and factor_max properties, i.e. the optimiser “sees” the well-scaled problem.

Parameters:
namestr

Name.

valuefloat or Quantity

Value.

scalefloat, optional

Scale (sometimes used in fitting).

unitUnit or str, optional

Unit. Default is “”.

minfloat, str or quantity, optional

Minimum (sometimes used in fitting). If None, set to numpy.nan. Default is None.

maxfloat, str or quantity, optional

Maximum (sometimes used in fitting). Default is numpy.nan.

frozenbool, optional

Frozen (used in fitting). Default is False.

errorfloat, optional

Parameter error. Default is 0.

scan_minfloat, optional

Minimum value for the parameter scan. Overwrites scan_n_sigma. Default is None.

scan_maxfloat, optional

Maximum value for the parameter scan. Overwrites scan_n_sigma. Default is None.

scan_n_values: int, optional

Number of values to be used for the parameter scan. Default is 11.

scan_n_sigmaint, optional

Number of sigmas to scan. Default is 2.

scan_values: `numpy.array`, optional

Scan values. Overwrites all the scan keywords before. Default is None.

scale_method{‘scale10’, ‘factor1’, None}, optional

Method used to set factor and scale. Default is “scale10”.

interp{“lin”, “sqrt”, “log”}, optional

Parameter scaling to use for the scan. Default is “lin”.

priorPrior, optional

Prior set on the parameter. Default is None.

tag = ['SineTemporalModel', 'sinus']#

Methods Documentation

static evaluate(time, amp, omega, t_ref)[source]#

Evaluate at given times.

integral(t_min, t_max)[source]#

Evaluate the integrated flux within the given time intervals.

Parameters:
t_min: `~astropy.time.Time`

Start times of observation.

t_max: `~astropy.time.Time`

Stop times of observation.

Returns:
normfloat

Integrated flux norm on the given time intervals.

__init__(**kwargs)#
classmethod __new__(*args, **kwargs)#