FluxProfileEstimator#
- class gammapy.estimators.FluxProfileEstimator(regions, spectral_model=None, **kwargs)[source]#
Bases:
FluxPointsEstimator
Estimate flux profiles.
- Parameters:
- regionslist of
SkyRegion
Regions to use.
- spectral_model
SpectralModel
, optional Spectral model to compute the fluxes or brightness. Default is power-law with spectral index of 2.
- n_jobsint, optional
Number of processes used in parallel for the computation. Default is one, unless
N_JOBS_DEFAULT
was modified. The number of jobs is limited to the number of physical CPUs.- parallel_backend{“multiprocessing”, “ray”}, optional
Which backend to use for multiprocessing. Defaults to
BACKEND_DEFAULT
.- **kwargsdict, optional
Keywords forwarded to the
FluxPointsEstimator
(see documentation there for further description of valid keywords).
- regionslist of
Examples
This example shows how to compute a counts profile for the Fermi galactic center region:
>>> from astropy import units as u >>> from astropy.coordinates import SkyCoord >>> from gammapy.data import GTI >>> from gammapy.estimators import FluxProfileEstimator >>> from gammapy.utils.regions import make_orthogonal_rectangle_sky_regions >>> from gammapy.datasets import MapDataset >>> from gammapy.maps import RegionGeom
>>> # load example data >>> filename = "$GAMMAPY_DATA/fermi-3fhl-gc/fermi-3fhl-gc.fits.gz" >>> dataset = MapDataset.read(filename, name="fermi-dataset")
>>> # configuration >>> dataset.gti = GTI.create("0s", "1e7s", "2010-01-01")
>>> # creation of the boxes and axis >>> start_pos = SkyCoord("-1d", "0d", frame='galactic') >>> end_pos = SkyCoord("1d", "0d", frame='galactic')
>>> regions = make_orthogonal_rectangle_sky_regions( ... start_pos=start_pos, ... end_pos=end_pos, ... wcs=dataset.counts.geom.wcs, ... height=2 * u.deg, ... nbin=21 ... )
>>> # set up profile estimator and run >>> prof_maker = FluxProfileEstimator(regions=regions, energy_edges=[10, 2000] * u.GeV) >>> fermi_prof = prof_maker.run(dataset) >>> print(fermi_prof) FluxPoints ---------- geom : RegionGeom axes : ['lon', 'lat', 'energy', 'projected-distance'] shape : (1, 1, 1, 21) quantities : ['norm', 'norm_err', 'ts', 'npred', 'npred_excess', 'stat', 'stat_null', 'counts', 'success'] ref. model : pl n_sigma : 1 n_sigma_ul : 2 sqrt_ts_threshold_ul : 2 sed type init : likelihood
Attributes Summary
Configuration parameters.
Number of jobs as an integer.
Parallel backend as a string.
Get projected distance from the first region.
Methods Summary
copy
()Copy estimator.
estimate_best_fit
(datasets, parameter)Estimate parameter asymmetric errors.
estimate_counts
(datasets)Estimate counts for the flux point.
estimate_errn_errp
(datasets, parameter)Estimate parameter asymmetric errors.
estimate_flux_point
(datasets, energy_min, ...)Estimate flux point for a single energy group.
estimate_npred
(datasets)Estimate npred for the flux point.
estimate_npred_excess
(datasets)Estimate npred excess for the source.
estimate_scan
(datasets, parameter)Estimate parameter statistic scan.
estimate_ts
(datasets, parameter)Estimate parameter ts.
estimate_ul
(datasets, parameter)Estimate parameter ul.
get_scale_model
(models)Set scale model.
run
(datasets)Run flux profile estimation.
Attributes Documentation
- config_parameters#
Configuration parameters.
- n_jobs#
Number of jobs as an integer.
- parallel_backend#
Parallel backend as a string.
- projected_distance_axis#
Get projected distance from the first region.
For normal region this is defined as the distance from the center of the region. For annulus shaped regions it is the mean between the inner and outer radius.
- Returns:
- axis
MapAxis
Projected distance axis.
- axis
- selection_optional#
- tag = 'FluxProfileEstimator'#
Methods Documentation
- copy()#
Copy estimator.
- estimate_best_fit(datasets, parameter)#
Estimate parameter asymmetric errors.
- Parameters:
- datasets
Datasets
Datasets.
- parameter
Parameter
For which parameter to get the value.
- datasets
- Returns:
- resultdict
Dictionary with the various parameter estimation values. Entries are:
parameter.name: best fit parameter value.
“stat”: best fit total stat.
“success”: boolean flag for fit success.
parameter.name_err: covariance-based error estimate on parameter value.
- static estimate_counts(datasets)#
Estimate counts for the flux point.
- Parameters:
- datasetsDatasets
Datasets.
- Returns:
- resultdict
Dictionary with an array with one entry per dataset with the sum of the masked counts.
- estimate_errn_errp(datasets, parameter)#
Estimate parameter asymmetric errors.
- Parameters:
- datasets
Datasets
Datasets.
- parameter
Parameter
For which parameter to get the value.
- datasets
- Returns:
- resultdict
Dictionary with the parameter asymmetric errors. Entries are:
{parameter.name}_errp : positive error on parameter value.
{parameter.name}_errn : negative error on parameter value.
- estimate_flux_point(datasets, energy_min, energy_max)#
Estimate flux point for a single energy group.
- static estimate_npred(datasets)#
Estimate npred for the flux point.
- Parameters:
- datasets
Datasets
Datasets.
- datasets
- Returns:
- resultdict
Dictionary with an array with one entry per dataset with the sum of the masked npred.
- estimate_npred_excess(datasets)#
Estimate npred excess for the source.
- Parameters:
- datasetsDatasets
Datasets.
- Returns:
- resultdict
Dictionary with an array with one entry per dataset with the sum of the masked npred excess.
- estimate_scan(datasets, parameter)#
Estimate parameter statistic scan.
- estimate_ts(datasets, parameter)#
Estimate parameter ts.
- Parameters:
- datasets
Datasets
Datasets.
- parameter
Parameter
For which parameter to get the value.
- datasets
- Returns:
- resultdict
Dictionary with the test statistic of the best fit value compared to the null hypothesis. Entries are:
“ts” : fit statistic difference with null hypothesis.
“npred” : predicted number of counts per dataset.
“stat_null” : total stat corresponding to the null hypothesis
- estimate_ul(datasets, parameter)#
Estimate parameter ul.
- get_scale_model(models)#
Set scale model.
- Parameters:
- models
Models
Models.
- models
- Returns:
- model
ScaleSpectralModel
Scale spectral model.
- model
- run(datasets)[source]#
Run flux profile estimation.
- Parameters:
- datasetslist of
MapDataset
Map datasets.
- datasetslist of
- Returns:
- profile
FluxPoints
Profile flux points.
- profile