FluxProfileEstimator#
- class gammapy.estimators.FluxProfileEstimator[source]#
Bases:
FluxPointsEstimator
Estimate flux profiles.
The class is backward folding of FluxPointsEstimator. However, the re-optimization is not available, as only one spectral model can be fitted.
- Parameters:
- regionslist of
SkyRegion
Regions to use.
- spectral_model
SpectralModel
, optional Spectral model to compute the fluxes or brightness. Default is power-law with spectral index of 2.
- n_jobsint, optional
Number of processes used in parallel for the computation. Default is one, unless
N_JOBS_DEFAULT
was modified. The number of jobs is limited to the number of physical CPUs.- parallel_backend{“multiprocessing”, “ray”}, optional
Which backend to use for multiprocessing. Defaults to
BACKEND_DEFAULT
.- **kwargsdict, optional
Keywords forwarded to the
FluxPointsEstimator
(see documentation there for further description of valid keywords). Note that thereoptimized
keyword is accepted only if set to False. If not, an error is raised. If the keyword is not set by the user, it will be internally set to False by default.
- regionslist of
Examples
This example shows how to compute a counts profile for the Fermi galactic center region:
>>> from astropy import units as u >>> from astropy.coordinates import SkyCoord >>> from gammapy.data import GTI >>> from gammapy.estimators import FluxProfileEstimator >>> from gammapy.utils.regions import make_orthogonal_rectangle_sky_regions >>> from gammapy.datasets import MapDataset >>> from gammapy.maps import RegionGeom
>>> # load example data >>> filename = "$GAMMAPY_DATA/fermi-3fhl-gc/fermi-3fhl-gc.fits.gz" >>> dataset = MapDataset.read(filename, name="fermi-dataset")
>>> # configuration >>> dataset.gti = GTI.create("0s", "1e7s", "2010-01-01")
>>> # creation of the boxes and axis >>> start_pos = SkyCoord("-1d", "0d", frame='galactic') >>> end_pos = SkyCoord("1d", "0d", frame='galactic')
>>> regions = make_orthogonal_rectangle_sky_regions( ... start_pos=start_pos, ... end_pos=end_pos, ... wcs=dataset.counts.geom.wcs, ... height=2 * u.deg, ... nbin=21 ... )
>>> # set up profile estimator and run >>> prof_maker = FluxProfileEstimator(regions=regions, energy_edges=[10, 2000] * u.GeV) >>> fermi_prof = prof_maker.run(dataset) >>> print(fermi_prof) FluxPoints ---------- geom : RegionGeom axes : ['lon', 'lat', 'energy', 'projected-distance'] shape : (1, 1, 1, 21) quantities : ['norm', 'norm_err', 'ts', 'npred', 'npred_excess', 'stat', 'stat_null', 'counts', 'success'] ref. model : pl n_sigma : 1 n_sigma_ul : 2 sqrt_ts_threshold_ul : 2 sed type init : likelihood
Attributes Summary
Configuration parameters.
Get projected distance from the first region.
Methods Summary
run
(datasets)Run flux profile estimation.
Attributes Documentation
- config_parameters#
Configuration parameters.
- projected_distance_axis#
Get projected distance from the first region.
For normal region this is defined as the distance from the center of the region. For annulus shaped regions it is the mean between the inner and outer radius.
- Returns:
- axis
MapAxis
Projected distance axis.
- axis
- tag = 'FluxProfileEstimator'#
Methods Documentation
- run(datasets)[source]#
Run flux profile estimation.
- Parameters:
- datasetslist of
MapDataset
Map datasets.
- datasetslist of
- Returns:
- profile
FluxPoints
Profile flux points.
- profile
- classmethod __new__(*args, **kwargs)#