ObservationsEventsSampler#

class gammapy.data.ObservationsEventsSampler(sampler_kwargs=None, dataset_kwargs=None, outdir='./simulated_data/', overwrite=True, n_jobs=None, parallel_backend=None)[source]#

Bases: ParallelMixin

Run event sampling for an emsemble of observations

Parameters:
sampler_kwargsdict, optional

Arguments passed to MapDatasetEventSampler.

dataset_kwargsdict, optional

Arguments passed to create_map_dataset_from_observation().

outdirstr, Path

path of the output files created. Default is “./simulated_data/”. If None a list of Observation is returned.

overwritebool

Overwrite the output files or not

n_jobsint, optional

Number of processes to run in parallel. Default is one, unless N_JOBS_DEFAULT was modified.

parallel_backend{‘multiprocessing’, ‘ray’}, optional

Which backend to use for multiprocessing. Default is None.

Attributes Summary

n_jobs

Number of jobs as an integer.

parallel_backend

Parallel backend as a string.

Methods Summary

run(observations[, models])

Run event sampling for an ensemble of onservations

simulate_observation(observation[, models])

Simulate a single observation.

Attributes Documentation

n_jobs#

Number of jobs as an integer.

parallel_backend#

Parallel backend as a string.

Methods Documentation

run(observations, models=None)[source]#

Run event sampling for an ensemble of onservations

Parameters:
observationObservation

Observation to be simulated.

modelsModels, optional

Models to simulate. Can be None to only sample background events. Default is None.

simulate_observation(observation, models=None)[source]#

Simulate a single observation.

Parameters:
observationObservation

Observation to be simulated.

modelsModels, optional

Models to simulate. Can be None to only sample background events. Default is None.