Analysis#

class gammapy.analysis.Analysis(config)[source]#

Bases: object

Config-driven high level analysis interface.

It is initialized by default with a set of configuration parameters and values declared in an internal high level interface model, though the user can also provide configuration parameters passed as a nested dictionary at the moment of instantiation. In that case these parameters will overwrite the default values of those present in the configuration file.

Parameters:
configdict or AnalysisConfig

Configuration options following AnalysisConfig schema.

Attributes Summary

config

Analysis configuration as an AnalysisConfig object.

models

Methods Summary

get_datasets()

Produce reduced datasets.

get_excess_map()

Calculate excess map with respect to the current model.

get_flux_points()

Calculate flux points for a specific model component.

get_light_curve()

Calculate light curve for a specific model component.

get_observations()

Fetch observations from the data store according to criteria defined in the configuration.

read_datasets()

Read datasets from YAML file.

read_models(path[, extend])

Read models from YAML file.

run_fit()

Fitting reduced datasets to model.

set_models(models[, extend])

Set models on datasets.

update_config(config)

Update the configuration.

write_datasets([overwrite, write_covariance])

Write datasets to YAML file.

write_models([overwrite, write_covariance])

Write models to YAML file.

Attributes Documentation

config#

Analysis configuration as an AnalysisConfig object.

models#

Methods Documentation

get_datasets()[source]#

Produce reduced datasets.

Notes

The progress bar can be displayed for this function.

get_excess_map()[source]#

Calculate excess map with respect to the current model.

get_flux_points()[source]#

Calculate flux points for a specific model component.

get_light_curve()[source]#

Calculate light curve for a specific model component.

get_observations()[source]#

Fetch observations from the data store according to criteria defined in the configuration.

read_datasets()[source]#

Read datasets from YAML file.

File names are taken from the configuration file.

read_models(path, extend=True)[source]#

Read models from YAML file.

Parameters:
pathstr

Path to the model file.

extendbool, optional

Extend the exiting models on the datasets or replace them. Default is True.

run_fit()[source]#

Fitting reduced datasets to model.

set_models(models, extend=True)[source]#

Set models on datasets.

Adds FoVBackgroundModel if not present already

Parameters:
modelsModels or str

Models object or YAML models string.

extendbool, optional

Extend the exiting models on the datasets or replace them. Default is True.

update_config(config)[source]#

Update the configuration.

write_datasets(overwrite=True, write_covariance=True)[source]#

Write datasets to YAML file.

File names are taken from the configuration file.

Parameters:
overwritebool, optional

Overwrite existing file. Default is True.

write_covariancebool, optional

Save covariance or not. Default is True.

write_models(overwrite=True, write_covariance=True)[source]#

Write models to YAML file.

File name is taken from the configuration file.