FluxPointsConfig#
- class gammapy.analysis.FluxPointsConfig[source]#
Bases:
GammapyBaseConfig
Configuration for the
FluxPointsEstimator
.- Attributes:
- energydict
Energy binning for the light curve. Should contain the following keys ‘min’ and ‘max’ (with energy quantities) and ‘nbins’.
- sourcestr
Source name.
- parametersdict
Optional parameters such as selection filters, options are: “all”, “errn-errp”, “ul”, “scan”
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.Attributes Summary
Configuration for the model, should be a dictionary conforming to [
ConfigDict
][pydantic.config.ConfigDict].Attributes Documentation
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}#
Configuration for the model, should be a dictionary conforming to [
ConfigDict
][pydantic.config.ConfigDict].
- __init__(**data)#
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.- Parameters:
data (Any)
- Return type:
None
- classmethod __new__(*args, **kwargs)#